Publications

Results 76–100 of 151
Skip to search filters

Anomalous Annealing Response of Directed Energy Deposited Type 304L Austenitic Stainless Steel

JOM

Smith, Thale R.; Sugar, Joshua D.; Schoenung, Julie M.; San Marchi, Christopher W.

Directed energy deposited (DED) and forged austenitic stainless steels possess dissimilar microstructures but can exhibit similar mechanical properties. In this study, annealing was used to evolve the microstructure of both conventional wrought and DED type 304L austenitic stainless steels, and significant differences were observed. In particular, the density of geometrically necessary dislocations and hardness were used to probe the evolution of the microstructure and properties. Forged type 304L exhibited the expected decrease in measured dislocation density and hardness as a function of annealing temperature. The more complex microstructure–property relationship observed in the DED type 304L material is attributed to compositional heterogeneities in the solidification microstructure.

More Details

Microstructure-property relationships in powder bed fusion of type 304L austenitic stainless steel

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

San Marchi, Christopher W.; Smith, Thale R.; Sugar, Joshua D.; Balch, Dorian K.

Additive manufacturing (AM) includes a diverse suite of innovative manufacturing processes for producing near-net shape metallic components, typically from powder or wire. Reported mechanical properties of materials produced by these processes varies significantly and can usually be correlated with the relative porosity in the materials. In this study, relatively simple test components were manufactured from type 304L austenitic stainless steel by powder bed fusion (PBF). The quality of the components depends on a host of manufacturing parameters as well as the characteristics of the feedstock. In this study, the focus is the bulk material response. Tensile properties are reported for PBF type 304L produced in similar build geometries on two different machines with independent operators. Additionally, the effect of hydrogen on the tensile properties of the AM materials is evaluated. The goal of this study is to provide a benchmark for tensile properties of PBF 304L material in the context of wrought type 304L, and to make a preliminary assessment of the effects of hydrogen on tensile properties.

More Details

Strong Photothermoelectric Response and Contact Reactivity of the Dirac Semimetal ZrTe5

ACS Applied Materials and Interfaces

Leonard, Francois L.; Yu, Wenlong; Celio, Kimberlee C.; Medlin, Douglas L.; Sugar, Joshua D.; Talin, A.A.; Pan, Wei P.

The family of three-dimensional topological insulators opens new avenues to discover novel photophysics and to develop novel types of photodetectors. ZrTe5 has been shown to be a Dirac semimetal possessing unique topological, electronic, and optical properties. Here, we present spatially resolved photocurrent measurements on devices made of nanoplatelets of ZrTe5, demonstrating the photothermoelectric origin of the photoresponse. Because of the high electrical conductivity and good Seebeck coefficient, we obtain noise-equivalent powers as low as 42 pW/Hz1/2, at room temperature for visible light illumination, at zero bias. We also show that these devices suffer from significant ambient reactivity, such as the formation of a Te-rich surface region driven by Zr oxidation as well as severe reactions with the metal contacts. This reactivity results in significant stresses in the devices, leading to unusual geometries that are useful for gaining insight into the photocurrent mechanisms. Our results indicate that both the large photothermoelectric response and reactivity must be considered when designing or interpreting photocurrent measurements in these systems.

More Details

Enhanced Kinetics of Electrochemical Hydrogen Uptake and Release by Palladium Powders Modified by Electrochemical Atomic Layer Deposition

ACS Applied Materials and Interfaces

Benson, David M.; Tsang, Chu F.; Sugar, Joshua D.; Jagannathan, Kaushik; Robinson, David R.; El Gabaly Marquez, Farid E.; Cappillino, Patrick J.; Stickney, John L.

Electrochemical atomic layer deposition (E-ALD) is a method for the formation of nanofilms of materials, one atomic layer at a time. It uses the galvanic exchange of a less noble metal, deposited using underpotential deposition (UPD), to produce an atomic layer of a more noble element by reduction of its ions. This process is referred to as surface limited redox replacement and can be repeated in a cycle to grow thicker deposits. It was previously performed on nanoparticles and planar substrates. In the present report, E-ALD is applied for coating a submicron-sized powder substrate, making use of a new flow cell design. E-ALD is used to coat a Pd powder substrate with different thicknesses of Rh by exchanging it for Cu UPD. Cyclic voltammetry and X-ray photoelectron spectroscopy indicate an increasing Rh coverage with increasing numbers of deposition cycles performed, in a manner consistent with the atomic layer deposition (ALD) mechanism. Cyclic voltammetry also indicated increased kinetics of H sorption and desorption in and out of the Pd powder with Rh present, relative to unmodified Pd.

More Details
Results 76–100 of 151
Results 76–100 of 151