Publications

Results 76–100 of 122
Skip to search filters

Innovative offshore vertical-axis wind turbine rotor project

European Wind Energy Conference and Exhibition 2012, EWEC 2012

Paquette, Joshua P.; Barone, Matthew F.

A research project has recently begun to explore the viability of vertical axis wind turbines (VAWT) for future U.S. offshore installations, especially in resource-rich, deep-water locations. VAWTs may offer reductions in cost across multiple categories, including operations and maintenance (O&M), support structure, installation, and electrical infrastructure costs. The cost of energy (COE) reduction opportunities follow from three fundamental characteristics of the VAWT: lower turbine center of gravity, reduced machine complexity, and the opportunity for scaling the machine to very large sizes (10-20 MW). This paper discusses why VAWTs should be considered for offshore installation, describes the project that has been created to explore this prospect, and gives some early results from the project. These results indicate a potential for COE reduction of over 20%.

More Details

Structural health and prognostics management for offshore wind turbines :

Griffith, Daniel G.; Resor, Brian R.; Paquette, Joshua P.

Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blades torsional stiffness due to the disbond, which also resulted in changes in the blades local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

More Details

Simulating the entire life of an offshore wind turbine

European Wind Energy Conference and Exhibition 2012, EWEC 2012

Barone, Matthew; Paquette, Joshua P.; Resor, Brian R.; Manuel, Lance; Nguyen, Hieu

Sixty-three years of aero-hydro-elastic loads simulations are demonstrated for a 5 MW offshore wind turbine deployed in shallow water. This large amount of simulation was made possible through the use of a high-performance computing cluster. The resulting one-hour extreme load distributions are examined; the extensive number of one-hour realizations allows for direct estimation of fifty-year return loads, without resorting to extrapolation. This type of simulation study opens up new possibilities for developing wind turbine design standards and discovering physical mechanisms that lead to extreme loads on wind turbine components.

More Details

Radar-cross-section reduction of wind turbines. part 1

McDonald, Jacob J.; Brock, Billy C.; Clem, Paul G.; Paquette, Joshua P.; Patitz, Ward E.; Calkins, David C.; Loui, Hung L.

In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

More Details

Preliminary structural design conceptualization for composite rotor for verdant power water current turbine

Paquette, Joshua P.

Sandia National Laboratories (SNL) and Verdant Power Inc. (VPI) have partnered under a Cooperative Research and Development Agreement (CRADA) to develop a new kinetic hydropower rotor. The rotor features an improved hydrodynamic and structural design which features state-of-the-art technology developed for the wind industry. The new rotor will have higher energy capture, increased system reliability, and reduction of overall cost of energy. This project was divided into six tasks: (1) Composite Rotor Project Planning and Design Specification; (2) Baseline Fatigue Testing and Failure analysis; (3) Develop Blade/Rotor Performance Model; (4) Hydrofoil Survey and Selection; (5) FEM Structural Design; and (6) Develop Candidate Rotor Designs and Prepare Final Report.

More Details

Mapping of 1D beam loads to the 3D wind blade for buckling analysis

Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

Berg, Jonathan C.; Paquette, Joshua P.; Resor, Brian R.

This paper discusses the development of a consistent methodology for mapping one-dimensional distributed beam loads to a three-dimensional shell structure. The resultant force distribution is a linear approximation to the actual aerodynamic pressure distribution but is sufficient to obtain accurate strain and displacement results. The purpose of the mapping technique is to apply more realistic wind loads to the shell model of a wind turbine blade without the need to set up and run expensive computational fluid dynamics or fluid structure interaction problems. Subsequent buckling and stress analysis reveal how this approach compares to other simplified methods of defining the loads. Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc.

More Details
Results 76–100 of 122
Results 76–100 of 122