System Level Safety Design and Planning
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Failure propagation testing is of increasing interest to the designers and end users of battery systems. One of the chief difficulties, however, is choosing an appropriate initiation method to perform the test. Single cell abuse testing is typically used to initiate thermal runaway but this can involve a large amount of additional energy injected into the system. It is assumed that this will have some impact on the behavior of a propagating thermal runaway event, but there is little data available as to how significant this would be. Further, it is ultimately difficult to develop viable propagation tests for compliance and public safety activities without better knowledge of how test methods will impact the results. This work looks at propagating battery failure with a variety of chemistries, formats, configurations and initiation methods to determine the level of significance of the chosen initiation method on the test results. We have ultimately found while there is some impact on the detailed results of propagation testing, in most cases other factors, particularly the energy density of the system play a much greater role in the likelihood of a propagation event consuming an entire battery. We have also provided some guidelines for test design to support best practices in testing.
Abstract not provided.
Journal of the Electrochemical Society
The heat generated during a single cell failure within a high energy battery system can force adjacent cells into thermal runaway, creating a cascading propagation effect through the entire system. This work examines the response of modules of stacked pouch cells after thermal runaway is induced in a single cell. The prevention of cascading propagation is explored on cells with reduced states of charge and stacks with metal plates between cells. Reduced states of charge and metal plates both reduce the energy stored relative to the heat capacity, and the results show how cascading propagation may be slowed and mitigated as this varies. These propagation limits are correlated with the stored energy density. Results show significant delays between thermal runaway in adjacent cells, which are analyzed to determine intercell contact resistances and to assess how much heat energy is transmitted to cells before they undergo thermal runaway. A propagating failure of even a small pack may stretch over several minutes including delays as each cell is heated to the point of thermal runaway. This delay is described with two new parameters in the form of gap-crossing and cell-crossing time to grade the propensity of propagation from cell to cell.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.