Composite Materials for Hazard Mitigation of Reactive Metal Hydrides
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This presentation briefly describes the ongoing study of fuel cell systems on-board a commercial airplane. Sandia's current project is focused on Proton Exchange Membrane (PEM) fuel cells applied to specific on-board electrical power needs. They are trying to understand how having a fuel cell on an airplane would affect overall performance. The fuel required to accomplish a mission is used to quantify the performance. Our analysis shows the differences between the base airplane and the airplane with the fuel cell. There are many ways of designing a system, depending on what you do with the waste heat. A system that requires ram air cooling has a large mass penalty due to increased drag. The bottom-line impact can be expressed as additional fuel required to complete the mission. Early results suggest PEM fuel cells can be used on airplanes with manageable performance impact if heat is rejected properly. For PEMs on aircraft, we are continuing to perform: (1) thermodynamic analysis (investigate configurations); (2) integrated electrical design (with dynamic modeling of the micro grid); (3) hardware assessment (performance, weight, and volume); and (4) galley and peaker application.
This paper describes mitigation technologies that are intended to enable the deployment of advanced hydrogen storage technologies for early market and automotive fuel cell applications. Solid State hydrogen storage materials provide an opportunity for a dramatic increase in gravimetric and volumetric energy storage density. Systems and technologies based on the advanced materials have been developed and demonstrated within the laboratory [1,2], and in some cases, integrated with fuel cell systems. The R&D community will continue to develop these technologies for an ever increasing market of fuel cell technologies, including, forklift, light-cart, APU, and automotive systems. Solid state hydrogen storage materials are designed and developed to readily release, and in some cases, react with diatomic hydrogen. This favorable behavior is often accomplished with morphology design (high surface area), catalytic additives (titanium for example), and high purity metals (such as aluminum, Lanthanum, or alkali metals). These favorable hydrogen reaction characteristics often have a related, yet less-desirable effect: sensitivity and reactivity during exposure to ambient contamination and out-of-design environmental conditions. Accident scenarios resulting in this less-favorable reaction behavior must also be managed by the system developer to enable technology deployment and market acceptance. Two important accident scenarios are identified through hazards and risk analysis methods. The first involves a breach in plumbing or tank resulting from a collision. The possible consequence of this scenario is analyzed though experimentally based chemical kinetic and transport modeling of metal hydride beds. An advancing reaction front between the metal hydride and ambient air is observed to proceed throughout the bed. This exothermic reaction front can result in loss of structural integrity of the containing vessel and lead to un-favorable overheating events. The second important accident scenario considered is a pool fire or impinging fire resulting from a collision between a hydrocarbon or hydrogen fueled vehicle. The possible consequence of this scenario is analyzed with experimentally-based numerical simulation of a metal hydride system. During a fire scenario, the hydrogen storage material will rapidly decompose and release hydrogen at high pressure. Accident scenarios initiated by a vehicular collision leading a pipe break or catastrophic failure of the hydride vessel and by external pool fire with flame engulfing the storage vessel are developed using probabilistic modeling. The chronology of events occurring subsequent to each accident initiator is detailed in the probabilistic models. Technology developed to manage these scenarios includes: (1) the use of polymer supports to reduce the extent and rate of reaction with air and water, (2) thermal radiation shielding. The polymer supported materials are demonstrated to provide mitigation of unwanted reaction while not impacting the hydrogen storage performance of the material. To mitigate the consequence of fire engulfment or impingement, thermal radiation shielding is considered to slow the rate of decomposition and delay the potential for loss-of-containment. In this paper we explore the use of these important mitigation technologies for a variety of accident scenarios.
Abstract not provided.
Abstract not provided.
Abstract not provided.