Publications

Results 151–175 of 242
Skip to search filters

Micropillar compression technique applied to micron-scale mudstone elasto-plastic deformation

Dewers, Thomas D.; Boyce, Brad B.; Buchheit, Thomas E.; Heath, Jason; Michael, Joseph R.

Mudstone mechanical testing is often limited by poor core recovery and sample size, preservation and preparation issues, which can lead to sampling bias, damage, and time-dependent effects. A micropillar compression technique, originally developed by Uchic et al. 2004, here is applied to elasto-plastic deformation of small volumes of mudstone, in the range of cubic microns. This study examines behavior of the Gothic shale, the basal unit of the Ismay zone of the Pennsylvanian Paradox Formation and potential shale gas play in southeastern Utah, USA. Precision manufacture of micropillars 5 microns in diameter and 10 microns in length are prepared using an ion-milling method. Characterization of samples is carried out using: dual focused ion - scanning electron beam imaging of nano-scaled pores and distribution of matrix clay and quartz, as well as pore-filling organics; laser scanning confocal (LSCM) 3D imaging of natural fractures; and gas permeability, among other techniques. Compression testing of micropillars under load control is performed using two different nanoindenter techniques. Deformation of 0.5 cm in diameter by 1 cm in length cores is carried out and visualized by a microscope loading stage and laser scanning confocal microscopy. Axisymmetric multistage compression testing and multi-stress path testing is carried out using 2.54 cm plugs. Discussion of results addresses size of representative elementary volumes applicable to continuum-scale mudstone deformation, anisotropy, and size-scale plasticity effects. Other issues include fabrication-induced damage, alignment, and influence of substrate.

More Details

Hydrogen-Assisted fracture of low nickel content 304 and 316l austenitic stainless steels

18th European Conference on Fracture: Fracture of Materials and Structures from Micro to Macro Scale

Marchi, C.S.; Yang, Nancy Y.; Headley, T.J.; Michael, Joseph R.

There has been significant debate in the literature about the role of strain-induced martensite in hydrogen-Assisted fracture of metastable austenitic stainless steels. It is clear that α'-martensite is not necessary for hydrogen-Assisted fracture since hydrogen affects the tensile ductility and fracture properties of stable austenitic stainless steels. Martensite, however, is believed to facilitate hydrogen transport in austenitic stainless steel and numerous studies propose that martensite contributes to fracture. Yet conclusive evidence that strain-induced α'-martensite plays an important mechanistic role on fracture processes in the presence of hydrogen has not been clearly articulated in the literature. In this study, we report microstructural evidence suggesting that α'-martensite does not play a primary role in hydrogen-Assisted fracture during tensile testing of metastable austenitic stainless steel. This microstructural evidence also suggests that thermal twin boundaries are susceptible sites for hydrogen-Assisted fracture.

More Details

The role of crystallography and nanostructures on metallic friction

Prasad, Somuri V.; Michael, Joseph R.; Battaile, Corbett C.; Kotula, Paul G.

In ductile metals, sliding contact is often accompanied by severe plastic deformation localized to a small volume of material adjacent to the wear surface. During the initial run-in period, hardness, grain structure and crystallographic texture of the surfaces that come into sliding contact undergo significant changes, culminating in the evolution of subsurface layers with their own characteristic features. Here, a brief overview of our ongoing research on the fundamental phenomena governing the friction-induced recrystallization in single crystal metals, and how these recrystallized structures with nanometer-size grains would in turn influence metallic friction will be presented. We have employed a novel combination of experimental tools (FIB, EBSD and TEM) and an analysis of the critical resolved shear stress (RSS) on the twelve slip systems of the FCC lattice to understand the evolution of these friction-induced structures in single crystal nickel. The later part of the talk deals with the mechanisms of friction in nanocrystalline Ni films. Analyses of friction-induced subsurfaces seem to confirm that the formation of stable ultrafine nanocrystalline layers with 2-10 nm grains changes the deformation mechanism from the traditional dislocation mediated one to that is predominantly controlled by grain boundaries, resulting in significant reductions in the coefficient friction.

More Details

Application of diamond-like nanocomposite tribological coatings on LIGA microsystem parts

Journal of Microelectromechanical Systems

Prasad, Somuri V.; Scharf, Thomas W.; Kotula, Paul G.; Michael, Joseph R.; Christenson, Todd R.

The major focus of this study was to examine the feasibility of applying diamond-like nanocomposite (DLN) coatings on the sidewalls of Ni alloy parts fabricated using lithographie, galvanoformung and abformung (LIGA: a German acronym that means lithography, electroforming, and molding) for friction and wear control. Planar test coupons were employed to understand the friction mechanisms in regimes relevant to LIGA microsytems. Friction tests were conducted on planar test coupons as well as between LIGA-fabricated test structures in planar-sidewall and sidewall-sidewall configurations. Measurements were made in dry nitrogen and air with 50% relative humidity by enclosing the friction tester in an environmental chamber. In contrast to bare metal-metal contacts, minimal wear was exhibited for the DLN-coated LIGA NiMn alloy parts and test coupons. The low friction behavior of DLN was attributed to its ability to transfer to the rubbing counterface providing low interfacial shear at the sliding contact. The coating coverage and chemistry on the sidewalls and the substrate-coating interface integrity were examined by transmission electron microscopy, Automated eXpert Spectral Image Analysis, and electron backscatter diffraction on cross sections prepared by focused ion beam microscopy. The role of novel characterization techniques to evaluate the surface coatings for LIGA microsystems technology is highlighted. © 2009 IEEE.

More Details
Results 151–175 of 242
Results 151–175 of 242