Publications

Results 226–242 of 242
Skip to search filters

New electron microscopy techniques of the study of meteoritic metal

Goldstein, Joseph I.; Michael, Joseph R.; Kotula, Paul G.

Metallic Phases in extraterrestrial materials are composed of Fe-Ni with minor amounts of Co, P, Si, Cr, etc. Electron microscopy techniques (SEM, TEM, EPMA, AEM) have been used for almost 50 years to study micron and submicron microscopic features in the metal phases (Fig. 1) such as clear taenite, cloudy zone, plessite, etc [1,2]. However lack of instrumentation to prepare TEM thin foils in specific sample locations and to obtain micro-scale crystallographic data have limited these investigations. New techniques such as the focused ion beam (FIB) and the electron backscatter electron diffraction (EBSD) techniques have overcome these limitations. The application of the FIB instrument has allowed us to prepare {approx}10 um long by {approx} 5um deep TEM thin sections of metal phases from specific regions of metal particles, in chondrites, irons and stony iron meteorites, identified by optical and SEM observation. Using a FEI dual beam FIB we were able to study very small metal particles in samples of CH chondrites [3] and zoneless plessite (ZP) in ordinary chondrites. Fig. 2 shows a SEM photomicrograph of a {approx}40 um ZP particle in Kernouve, a H6 chondrite. Fig. 3a,b shows a TEM photograph of a section of the FIB prepared TEM foil of the ZP particle and a Ni trace through a tetrataenite/kamacite region of the particle. It has been proposed that the Widmanstatten pattern in low P iron meteorites forms by martensite decomposition, via the reaction {gamma} {yields} {alpha}{sub 2} + {gamma} {yields} {alpha} + {gamma} in which {alpha}{sub 2}, martensite, decomposes to the equilibrium {alpha} and {gamma} phases during the cooling process [4]. In order to show if this mechanism for Widmanstatten pattern formation is correct, crystallographic information is needed from the {gamma} or taenite phases throughout a given meteorite. The EBSD technique was employed in this study to obtain the orientation of the taenite surrounding the initial martensite phase and the kamacite which forms as {alpha}{sub 2} or as Widmanstatten plates in a series of IVB irons. Fig. 4a,b shows EBSD orientation maps of taenite and kamacite from the Tawallah Valley IVB iron. We observe that the orientation of the taenite in the IVB meteorites is the same throughout the sample consistent with the orientation of the high temperature single phase taenite before formation of the Widmanstatten pattern.

More Details

Tomographic spectral imaging: analysis of localized corrosion

Kotula, Paul G.; Keenan, Michael R.; Michael, Joseph R.

Microanalysis is typically performed to analyze the near surface of materials. There are many instances where chemical information about the third spatial dimension is essential to the solution of materials analyses. The majority of 3D analyses however focus on limited spectral acquisition and/or analysis. For truly comprehensive 3D chemical characterization, 4D spectral images (a complete spectrum from each volume element of a region of a specimen) are needed. Furthermore, a robust statistical method is needed to extract the maximum amount of chemical information from that extremely large amount of data. In this paper, an example of the acquisition and multivariate statistical analysis of 4D (3-spatial and 1-spectral dimension) x-ray spectral images is described. The method of utilizing a single- or dual-beam FIB (w/o or w/SEM) to get at 3D chemistry has been described by others with respect to secondary-ion mass spectrometry. The basic methodology described in those works has been modified for comprehensive x-ray microanalysis in a dual-beam FIB/SEM (FEI Co. DB-235). In brief, the FIB is used to serially section a site-specific region of a sample and then the electron beam is rastered over the exposed surfaces with x-ray spectral images being acquired at each section. All this is performed without rotating or tilting the specimen between FIB cutting and SEM imaging/x-ray spectral image acquisition. The resultant 4D spectral image is then unfolded (number of volume elements by number of channels) and subjected to the same multivariate curve resolution (MCR) approach that has proven successful for the analysis of lower-dimension x-ray spectral images. The TSI data sets can be in excess of 4Gbytes. This problem has been overcome (for now) and images up to 6Gbytes have been analyzed in this work. The method for analyzing such large spectral images will be described in this presentation. A comprehensive 3D chemical analysis was performed on several corrosion specimens of Cu electroplated with various metals. Figure 1A shows the top view of the localized corrosion region prepared for FIB sectioning. The TSI region has been coated with Pt and a trench has been milled along the bottom edge of the region, exposing it to the electron beam as seen in Figure 1B. The TSI consisted of 25 sections and was approximately 6Gbytes. Figure 1C shows several of the components rendered in 3D: Green is Cu; blue is Pb; cyan represents one of the corrosion products that contains Cu, Zn, O, S, and C; and orange represents the other corrosion product with Zn, O, S and C. Figure 1 D shows all of the component spectral shapes from the analysis. There is severe pathological overlap of the spectra from Ni, Cu and Zn as well as Pb and S. in spite of this clean spectral shapes have been extracted from the TSI. This powerful TSI technique could be applied to other sectioning methods well.

More Details

Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications. Part II, nickel base alloys

Proposed for publication in Welding Journal.

Michael, Joseph R.

The physical and welding a metallurgy of gadolinium- (Gd-) enriched Ni-based alloys has been examined using a combination of differential thermal analysis, hot ductility testing. Varestraint testing, and various microstructural characterization techniques. Three different matrix compositions were chosen that were similar to commercial Ni-Cr-Mo base alloys (UNS N06455, N06022, and N06059). A ternary Ni-Cr-Gd alloy was also examined. The Gd level of each alloy was {approx}2 wt-%. All the alloys initiated solidification by formation of primary austenite and terminated solidification by a Liquid {gamma} + Ni{sub 5}Gd eutectic-type reaction at {approx}1270 C. The solidification temperature ranges of the alloys varied from {approx}100 to 130 C (depending on alloy composition). This is a substantial reduction compared to the solidification temperature range to Gd-enriched stainless steels (360 to 400 C) that terminate solidification by a peritectic reaction at {approx}1060 C. The higher-temperature eutectic reaction that occurs in the Ni-based alloys is accompanied by significant improvements in hot ductility and solidification cracking resistance. The results of this research demonstrate that Gd-enriched Ni-based alloys are excellent candidate materials for nuclear criticality control in spent nuclear fuel storage applications that require production and fabrication of large amounts of material through conventional ingot metallurgy and fusion welding techniques.

More Details

Microstructure and Reliability of Surface Micromachined Polysilicon Used for MEMS

American Society of Mechanical Engineers, Micro-Electromechanical Systems Division Publication (MEMS)

Buchheit, Thomas E.; Battaile, Corbett C.; Michael, Joseph R.; Boyce, Brad B.

Surface micromachining (SMM) techniques produce complex microscale polysilicon features on the surface of a silicon wafer using a patterned multilayer film deposition process. Failure characteristics of SMM polysilicon obtained from testing series of 2 μm and 4 μm wide ligaments fabricated using standard SMM processing techniques, fit a Weibull distribution, suggesting a behavior governed by a distribution of flaws, similar to brittle ceramic materials. However, positive identification of critical flaws that dictate the failure distributions within the ligaments remains unclear. Likely candidates are flaws associated with surface roughness or grain boundary intersections within the polysilicon microstructure. To address the possible connection between microstructure and failure behavior of SMM polysilicon, templates based on observed polysilicon microstructure were subjected to deformation simulations using polycrystal elasticity modeling. Series of simulations were performed to capture the statistical failure response of polysilicon due to local elastically driven stress concentrations between grains with different crystallographic orientations. Simulated results are presented and discussed in the context of experimental failure data.

More Details

Phase identification of individual crystalline particles by electron backscatter diffraction

Journal of Microscopy

Small, J.A.; Michael, Joseph R.

Recently, an electron backscatter diffraction (EBSD) system was developed that uses a 1024 × 1024 CCD camera coupled to a thin phosphor. This camera has been shown to produce excellent EBSD patterns. In this system, crystallographic information is determined from the EBSD pattern and coupled with the elemental information from energy or wavelength dispersive X-ray spectrometry. Identification of the crystalline phase of a sample is then made through a link to a commercial diffraction database. To date, this system has been applied almost exclusively to conventional, bulk samples that have been polished to a fiat surface. In this investigation, we report on the application of the EBSD system to the phase identification analysis of individual micrometre and submicrometre particles rather than fiat surfaces.

More Details

Welding Behavior of Free Machining Stainless Steel

Welding Journal Research Supplement

Robino, Charles V.; Headley, Thomas J.; Michael, Joseph R.; Robino, Charles V.

The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metal at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.

More Details

On the influence of applied fields on spinel formation

Michael, Joseph R.; Michael, Joseph R.

Interfaces play an important role in determining the effect of electric fields on the mechanism of the formation spinel by solid-state reaction. The reaction occurs by the movement of phase boundaries but the rate of this movement can be affected by grain boundaries in the reactants or in the reaction product. Only by understanding these relationships will it be possible to engineer their behavior. As a particular example of such a study, MgIn{sub 2}O{sub 4} can be formed by the reaction between single-crystal MgO substrate and a thin film of In{sub 2}O{sub 3} with or without an applied electric field. High-resolution backscattered electron (BSE) imaging and electron backscattered diffraction (EBSD) in a scanning electron microscope (SEM) has been used to obtain complementary chemical and crystallographic information.

More Details

Nanotechnology: Promises and challenges for tomorrow

Romig, Alton D.; Michael, Joseph R.; Michalske, Terry A.

Nanotechnology is based on the ability to create and utilize materials, devices and systems through control of the matter at the nanometer scale. If successful, nanotechnology is expected to lead to broad new technological developments. The efficiency of energy conversion can be increased through the use of nanostructured materials with enhanced magnetic, light emission or wear resistant properties. Energy generation using nanostructured photovoltaics or nanocluster driven photocatalysis could fundamentally change the economic viability of renewable energy sources. In addition, the ability to imitate molecular processes found in living organisms may be key to developing highly sensitive and discriminating chemical and biological sensors. Such sensors could greatly expand the range of medical home testing as well as provide new technologies to counter the spread of chemical and biological weapons. Even the production of chemicals and materials could be revolutionized through the development of molecular reactors that can promote low energy chemical pathways for materials synthesis. Although nanotechnologies hold great promise, significant scientific challenges must be addressed before they can convert that promise into a reality. A key challenge in nanoscience is to understand how nano-scale tailoring of materials can lead to novel and enhanced functions. The authors' laboratory, for example, is currently making broad contributions in this area by synthesizing and exploring nanomaterials ranging from layered structures for electronics/photonics to novel nanocrystalline catalysts. They are even adapting functions from biological molecules to synthesize new forms of nanostructured materials.

More Details

Small area analysis using micro-diffraction techniques

Goehner, Raymond P.; Tissot, Ralph G.; Michael, Joseph R.

An overall trend toward smaller electronic packages and devices makes it increasingly important and difficult to obtain meaningful diffraction information from small areas. X-ray micro-diffraction, electron back-scattered diffraction (EBSD) and Kossel are micro-diffraction techniques used for crystallographic analysis including texture, phase identification and strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements of areas between 10 {micro}m to 100 {micro}m. For areas this small glass capillary optics are used for producing a usable collimated x-ray beam. These optics are designed to reflect x-rays below the critical angle therefore allowing for larger solid acceptance angle at the x-ray source resulting in brighter smaller x-ray beams. The determination of residual strain using micro-diffraction techniques is very important to the semiconductor industry. Residual stresses have caused voiding of the interconnect metal which then destroys electrical continuity. Being able to determine the residual stress helps industry to predict failures from the aging effects of interconnects due to this stress voiding. Stress measurements would be impossible using a conventional x-ray diffractometer; however, utilizing a 30{micro}m glass capillary these small areas are readily assessable for analysis. Kossel produces a wide angle diffraction pattern from fluorescent x-rays generated in the sample by an e-beam in a SEM. This technique can yield very precise lattice parameters for determining strain. Fig. 2 shows a Kossel pattern from a Ni specimen. Phase analysis on small areas is also possible using an energy dispersive spectrometer (EBSD) and x-ray micro-diffraction techniques. EBSD has the advantage of allowing the user to observe the area of interest using the excellent imaging capabilities of the SEM. An EDS detector has been used for simultaneous element identification which enhances phase identification of unknowns. The x-ray area detector also allows for rapid microstructure information including crystallite orientation and size by directly observing the diffraction rings. These techniques allow for small area analysis that in the past would have been difficult if not impossible to obtain. The future development in x-ray optics and the use of synchrotron sources will allow for the potential of nondestructive submicron x-ray diffraction analysis.

More Details
Results 226–242 of 242
Results 226–242 of 242