SST/macro Manual
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Performance Evaluation Review
Abstract not provided.
Abstract not provided.
IEEE SIGMETRICS PER
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Computational Chemistry
Sharing low-level functionality between software packages enables more rapid development of new capabilities and reduces the duplication of work among development groups. Using the component approach advocated by the Common Component Architecture Forum, we have designed a flexible interface for sharing integrals between quantum chemistry codes. Implementation of these interfaces has been undertaken within the Massively Parallel Quantum Chemistry package, exposing both the IntV3 and Cints/Libint integrals packages to component applications. Benchmark timings for Hartree-Fock calculations demonstrate that the overhead due to the added interface code varies significantly, from less than 1% for small molecules with large basis sets to nearly 10% for larger molecules with smaller basis sets. Correlated calculations and density functional approaches encounter less severe performance overheads of less than 5%. While these overheads are acceptable, additional performance losses occur when arbitrary implementation details, such as integral ordering within buffers, must be handled. Integral reordering is observed to add an additional overhead as large as 12%; hence, a common standard for such implementation details is desired for optimal performance. © 2007 Wiley Periodicals, Inc.
Abstract not provided.
Proceedings - IEEE International Conference on Data Mining, ICDM
Linear algebra is a powerful and proven tool in web search. Techniques, such as the PageRank algorithm of Brin and Page and the HITS algorithm of Kleinberg, score web pages based on the principal eigenvector (or singular vector) of a particular non-negative matrix that captures the hyperlink structure of the web graph. We propose and test a new methodology that uses multilinear algebra to elicit more information from a higher-order representation of the hyperlink graph. We start by labeling the edges in our graph with the anchor text of the hyperlinks so that the associated linear algebra representation is a sparse, three-way tensor. The first two dimensions of the tensor represent the web pages while the third dimension adds the anchor text. We then use the rank-1 factors of a multilinear PARAFAC tensor decomposition, which are akin to singular vectors of the SVD, to automatically identify topics in the collection along with the associated authoritative web pages. © 2005 IEEE.
Abstract not provided.