Publications

Results 101–125 of 230
Skip to search filters

Quantifying the impact of material-model error on macroscale quantities-of-interest using multiscale a posteriori error-estimation techniques

MRS Advances

Brown, Judith A.; Bishop, Joseph E.

An a posteriori error-estimation framework is introduced to quantify and reduce modeling errors resulting from approximating complex mesoscale material behavior with a simpler macroscale model. Such errors may be prevalent when modeling welds and additively manufactured structures, where spatial variations and material textures may be present in the microstructure. We consider a case where a <100> fiber texture develops in the longitudinal scanning direction of a weld. Transversely isotropic elastic properties are obtained through homogenization of a microstructural model with this texture and are considered the reference weld properties within the error-estimation framework. Conversely, isotropic elastic properties are considered approximate weld properties since they contain no representation of texture. Errors introduced by using isotropic material properties to represent a weld are assessed through a quantified error bound in the elastic regime. Lastly, an adaptive error reduction scheme is used to determine the optimal spatial variation of the isotropic weld properties to reduce the error bound.

More Details

Direct Numerical Simulations in Solid Mechanics for Quantifying the Macroscale Effects of Microstructure and Material Model-Form Error

JOM

Bishop, Joseph E.; Emery, John M.; Battaile, Corbett C.; Littlewood, David J.; Baines, Andrew J.

Two fundamental approximations in macroscale solid-mechanics modeling are (1) the assumption of scale separation in homogenization theory and (2) the use of a macroscopic plasticity material model that represents, in a mean sense, the multitude of inelastic processes occurring at the microscale. With the goal of quantifying the errors induced by these approximations on engineering quantities of interest, we perform a set of direct numerical simulations (DNS) in which polycrystalline microstructures are embedded throughout a macroscale structure. The largest simulations model over 50,000 grains. The microstructure is idealized using a randomly close-packed Voronoi tessellation in which each polyhedral Voronoi cell represents a grain. An face centered cubic crystal-plasticity model is used to model the mechanical response of each grain. The overall grain structure is equiaxed, and each grain is randomly oriented with no overall texture. The detailed results from the DNS simulations are compared to results obtained from conventional macroscale simulations that use homogeneous isotropic plasticity models. The macroscale plasticity models are calibrated using a representative volume element of the idealized microstructure. Ultimately, we envision that DNS modeling will be used to gain new insights into the mechanics of material deformation and failure.

More Details

Geologic Carbon Storage and Fracture Fate: Chemistry Heterogeneity Models and What to do with it all

Dewers, Thomas D.; Rinehart, Alex R.; Major, Jonathan R.; Lee, Sanghyun L.; Reber, Jacqueline R.; Choens, Robert C.; Feldman, Joshua D.; Eichhubl, Peter E.; Wheeler, Mary W.; Ganis, Ben G.; Hayman, Nick H.; Ilgen, Anastasia G.; Prodanovic, Masa P.; Bishop, Joseph E.; Balhoff, Matt B.; Espinoza, Nicolas E.; Martinez, Mario J.; Yoon, Hongkyu Y.

Abstract not provided.

Quantifying the Impact of Material-Model Error on Macroscale Quantities-of-Interest Using Multiscale a Posteriori Error-Estimation Techniques

MRS Advances

Brown, Judith A.; Bishop, Joseph E.

An a posteriori error-estimation framework is introduced to quantify and reduce modeling errors resulting from approximating complex mesoscale material behavior with a simpler macroscale model. Such errors may be prevalent when modeling welds and additively manufactured structures, where spatial variations and material textures may be present in the microstructure. We consider a case where a <100> fiber texture develops in the longitudinal scanning direction of a weld. Transversely isotropic elastic properties are obtained through homogenization of a microstructural model with this texture and are considered the reference weld properties within the error-estimation framework. Conversely, isotropic elastic properties are considered approximate weld properties since they contain no representation of texture. Errors introduced by using isotropic material properties to represent a weld are assessed through a quantified error bound in the elastic regime. An adaptive error reduction scheme is used to determine the optimal spatial variation of the isotropic weld properties to reduce the error bound.

More Details

Simulating fragmentation and fluid-induced fracture in disordered media using random finite-element meshes

International Journal for Multiscale Computational Engineering

Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania N.

Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. Here, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipated during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.

More Details
Results 101–125 of 230
Results 101–125 of 230