Publications

Results 176–192 of 192
Skip to search filters

Atomistic modeling of nanowires, small-scale fatigue damage in cast magnesium, and materials for MEMS

Zimmerman, Jonathan A.

Lightweight and miniaturized weapon systems are driving the use of new materials in design such as microscale materials and ultra low-density metallic materials. Reliable design of future weapon components and systems demands a thorough understanding of the deformation modes in these materials that comprise the components and a robust methodology to predict their performance during service or storage. Traditional continuum models of material deformation and failure are not easily extended to these new materials unless microstructural characteristics are included in the formulation. For example, in LIGA Ni and Al-Si thin films, the physical size is on the order of microns, a scale approaching key microstructural features. For a new potential structural material, cast Mg offers a high stiffness-to-weight ratio, but the microstructural heterogeneity at various scales requires a structure-property continuum model. Processes occurring at the nanoscale and microscale develop certain structures that drive material behavior. The objective of the work presented in this report was to understand material characteristics in relation to mechanical properties at the nanoscale and microscale in these promising new material systems. Research was conducted primarily at the University of Colorado at Boulder to employ tightly coupled experimentation and simulation to study damage at various material size scales under monotonic and cyclic loading conditions. Experimental characterization of nano/micro damage will be accomplished by novel techniques such as in-situ environmental scanning electron microscopy (ESEM), 1 MeV transmission electron microscopy (TEM), and atomic force microscopy (AFM). New simulations to support experimental efforts will include modified embedded atom method (MEAM) atomistic simulations at the nanoscale and single crystal micromechanical finite element simulations. This report summarizes the major research and development accomplishments for the LDRD project titled 'Atomistic Modeling of Nanowires, Small-scale Fatigue Damage in Cast Magnesium, and Materials for MEMS'. This project supported a strategic partnership between Sandia National Laboratories and the University of Colorado at Boulder by providing funding for the lead author, Ken Gall, and his students, while he was a member of the University of Colorado faculty.

More Details

Shape memory and pseudoelasticity in metal nanowires

Proposed for publication in Nature Materials.

Zimmerman, Jonathan A.

Structural reorientations in metallic fcc nanowires are controlled by a combination of size, thermal energy, and the type of defects formed during inelastic deformation. By utilizing atomistic simulations, we show that certain fcc nanowires can exhibit both shape memory and pseudoelastic behavior. We also show that the formation of defect-free twins, a process related to the material stacking fault energy, nanometer size scale, and surface stresses is the mechanism that controls the ability of fcc nanowires of different materials to show a reversible transition between two crystal orientations during loading and thus shape memory and pseudoelasticity.

More Details

Coupled atomistic-continuum simulation using arbitrary overlapping domains

Proposed for publication in Journal of Computational Physics.

Zimmerman, Jonathan A.; Klein, Patrick A.

We present a formulation for coupling atomistic and continuum simulation methods for application to both quasistatic and dynamic analyses. In our formulation, a coarse-scale continuum discretization is assumed to cover all parts of the computational domain with atomistic crystals introduced only in regions of interest. The geometry of the discretization and crystal are allowed to overlap arbitrarily. Our approach uses interpolation and projection operators to link the kinematics of each region, which are then used to formulate a system potential energy from which we derive coupled expressions for the forces acting in each region. A hyperelastic constitutive formulation is used to compute the stress response of the defect-free continuum with constitutive properties derived from the Cauchy-Born rule. A correction to the Cauchy-Born rule is introduced in the overlap region to minimize fictitious boundary effects. Features of our approach will be demonstrated with simulations in one, two and three dimensions.

More Details

A robust, coupled approach for atomistic-continuum simulation

Zimmerman, Jonathan A.; Aubry, Sylvie A.; Bammann, Douglas J.; Hoyt, Jeffrey J.; Jones, Reese E.; Kimmer, Christopher J.; Klein, Patrick A.; Webb, Edmund B.

This report is a collection of documents written by the group members of the Engineering Sciences Research Foundation (ESRF), Laboratory Directed Research and Development (LDRD) project titled 'A Robust, Coupled Approach to Atomistic-Continuum Simulation'. Presented in this document is the development of a formulation for performing quasistatic, coupled, atomistic-continuum simulation that includes cross terms in the equilibrium equations that arise due to kinematic coupling and corrections used for the calculation of system potential energy to account for continuum elements that overlap regions containing atomic bonds, evaluations of thermo-mechanical continuum quantities calculated within atomistic simulations including measures of stress, temperature and heat flux, calculation used to determine the appropriate spatial and time averaging necessary to enable these atomistically-defined expressions to have the same physical meaning as their continuum counterparts, and a formulation to quantify a continuum 'temperature field', the first step towards constructing a coupled atomistic-continuum approach capable of finite temperature and dynamic analyses.

More Details

Atomistic simulations of the yielding of gold nanowires

Proposed for publication in Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences.

Zimmerman, Jonathan A.

We performed atomistic simulations to study the effect of free surfaces on the yielding of gold nanowires. Tensile surface stresses on the surfaces of the nanowires cause them to contract along the length with respect to the bulk face-centered cubic lattice and induce compressive stress in the interior. When the cross-sectional area of a (100) nanowire is less than 2.45 nm x 2.45 nm, the wire yields under its surface stresses. Under external forces and surface stresses, nanowires yield via the nucleation and propagation of the {l_brace}111{r_brace}<112> partial dislocations. The magnitudes of the tensile and compressive yield stress of (100) nanowires increase and decrease, respectively, with a decrease of the wire width. The magnitude of the tensile yield stress is much larger than that of the compressive yield stress for small (100) nanowires, while for small <111> nanowires, tensile and compressive yield stresses have similar magnitudes. The critical resolved shear stress (RSS) by external forces depends on wire width, orientation and loading condition (tension vs. compression). However, the critical RSS in the interior of the nanowires, which is exerted by both the external force and the surface-stress-induced compressive stress, does not change significantly with wire width for same orientation and same loading condition, and can thus serve as a 'local' criterion. This local criterion is invoked to explain the observed size dependence of yield behavior and tensile/compressive yield stress asymmetry, considering surface stress effects and different slip systems active in tensile and compressive yielding.

More Details

Using a dynamic point-source percolation model to simulate bubble growth

Zimmerman, Jonathan A.; Cowgill, D.F.

Accurate modeling of nucleation, growth and clustering of helium bubbles within metal tritide alloys is of high scientific and technological importance. Of interest is the ability to predict both the distribution of these bubbles and the manner in which these bubbles interact at a critical concentration of helium-to-metal atoms to produce an accelerated release of helium gas. One technique that has been used in the past to model these materials, and again revisited in this research, is percolation theory. Previous efforts have used classical percolation theory to qualitatively and quantitatively model the behavior of interstitial helium atoms in a metal tritide lattice; however, higher fidelity models are needed to predict the distribution of helium bubbles and include features that capture the underlying physical mechanisms present in these materials. In this work, we enhance classical percolation theory by developing the dynamic point-source percolation model. This model alters the traditionally binary character of site occupation probabilities by enabling them to vary depending on proximity to existing occupied sites, i.e. nucleated bubbles. This revised model produces characteristics for one and two dimensional systems that are extremely comparable with measurements from three dimensional physical samples. Future directions for continued development of the dynamic model are also outlined.

More Details
Results 176–192 of 192
Results 176–192 of 192