Publications

Results 51–60 of 60
Skip to search filters

Uncertainty quantification of cinematic imaging for development of predictive simulations of turbulent combustion

Frank, Jonathan H.; Lawson, Matthew L.; Sargsyan, Khachik S.; Debusschere, Bert D.; Najm, H.N.

Recent advances in high frame rate complementary metal-oxide-semiconductor (CMOS) cameras coupled with high repetition rate lasers have enabled laser-based imaging measurements of the temporal evolution of turbulent reacting flows. This measurement capability provides new opportunities for understanding the dynamics of turbulence-chemistry interactions, which is necessary for developing predictive simulations of turbulent combustion. However, quantitative imaging measurements using high frame rate CMOS cameras require careful characterization of the their noise, non-linear response, and variations in this response from pixel to pixel. We develop a noise model and calibration tools to mitigate these problems and to enable quantitative use of CMOS cameras. We have demonstrated proof of principle for image de-noising using both wavelet methods and Bayesian inference. The results offer new approaches for quantitative interpretation of imaging measurements from noisy data acquired with non-linear detectors. These approaches are potentially useful in many areas of scientific research that rely on quantitative imaging measurements.

More Details

Application of advanced laser diagnostics to hypersonic wind tunnels and combustion systems

Hsu, Andrea H.; Frank, Jonathan H.

This LDRD was a Sandia Fellowship that supported Andrea Hsu's PhD research at Texas A&M University and her work as a visitor at Sandia's Combustion Research Facility. The research project at Texas A&M University is concerned with the experimental characterization of hypersonic (Mach>5) flowfields using experimental diagnostics. This effort is part of a Multidisciplinary University Research Initiative (MURI) and is a collaboration between the Chemistry and Aerospace Engineering departments. Hypersonic flight conditions often lead to a non-thermochemical equilibrium (NTE) state of air, where the timescale of reaching a single (equilibrium) Boltzmann temperature is much longer than the timescale of the flow. Certain molecular modes, such as vibrational modes, may be much more excited than the translational or rotational modes of the molecule, leading to thermal-nonequilibrium. A nontrivial amount of energy is therefore contained within the vibrational mode, and this energy cascades into the flow as thermal energy, affecting flow properties through vibrational-vibrational (V-V) and vibrational-translational (V-T) energy exchanges between the flow species. The research is a fundamental experimental study of these NTE systems and involves the application of advanced laser and optical diagnostics towards hypersonic flowfields. The research is broken down into two main categories: the application and adaptation of existing laser and optical techniques towards characterization of NTE, and the development of new molecular tagging velocimetry techniques which have been demonstrated in an underexpanded jet flowfield, but may be extended towards a variety of flowfields. In addition, Andrea's work at Sandia National Labs involved the application of advanced laser diagnostics to flames and turbulent non-reacting jets. These studies included quench-free planar laser-induced fluorescence measurements of nitric oxide (NO) and mixture fraction measurements via Rayleigh scattering.

More Details

Effect of NO on extinction and re-ignition of vortex-perturbed hydrogen flames

Proposed for publication in the Combustion and Flame Journal.

Frank, Jonathan H.; Yoo, Chunsang N.; Chen, Jacqueline H.

The catalytic effect of nitric oxide (NO) on the dynamics of extinction and re-ignition of a vortex-perturbed non-premixed hydrogen-air flame is studied in a counterflow burner. A diffusion flame is established with counterflowing streams of nitrogen-diluted hydrogen at ambient temperature and air heated to a range of temperatures that brackets the auto-ignition temperature. Localized extinction is induced by impulsively driving a fuel-side toroidal vortex into the steady flame, and the recovery of the extinguished region is monitored by planar laser-induced fluorescence (PLIF) of the hydroxyl radical (OH). The dynamics of flame recovery depend on the air temperature and fuel concentration, and four different recovery modes are identified. These modes involve combinations of edge-flame propagation and the expansion of an auto-ignition kernel that forms within the extinguished region. The addition of a small amount of NO significantly alters the re-ignition process by shifting the balance between chain-termination and chain-propagation reactions to enhance auto-ignition. The ignition enhancement by this catalytic effect causes a shift in the conditions that govern the recovery modes. In addition, the effects of NO concentration and vortex strength on the flame recovery are examined. Direct numerical simulations of the flame-vortex interaction with and without NO doping show how the small amount of OH produced by NO-catalyzed reactions has a significant impact on the development of an auto-ignition kernel. This joint experimental and numerical study provides detailed insight into the interaction between transient flows and ignition processes.

More Details

Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames

Applied Optics

Kulatilaka, Waruna D.; Patterson, Brian D.; Frank, Jonathan H.; Settersten, Thomas B.

Two-photon laser-induced fluorescence (TP-LIF) line imaging of atomic hydrogen was investigated in a series of premixed CH4/O 2/N2, H2/O2, and H 2/O2/N2 flames using excitation with either picosecond or nanosecond pulsed lasers operating at 205 nm. Radial TP-LIF profiles were measured for a range of pulse fluences to determine the maximum interference-free signal levels and the corresponding picosecond and nanosecond laser fluences in each of 12 flames. For an interference-free measurement, the shape of the TP-LIF profile is independent of laser fluence. For larger fluences, distortions in the profile are attributed to photodissociation of H2O, CH3, and/or other combustion intermediates, and stimulated emission. In comparison with the nanosecond laser, excitation with the picosecond laser can effectively reduce the photolytic interference and produces approximately an order of magnitude larger interference-free signal in CH4/O2/N2 flames with equivalence ratios in the range of 0.5 ≤ Φ ≤ 1.4, and in H2/O2 flames with 0.3 ≤ Φ ≤ 1.2. Although photolytic interference limits the nanosecond laser fluence in all flames, stimulated emission, occurring between the laser-excited level, H(n = 3), and H(n = 2), is the limiting factor for picosecond excitation in the flames with the highest H atom concentration. Nanosecond excitation is advantageous in the richest (Φ = 1.64) CH 4/O2/N2 flame and in H2/O 2/N2 flames. The optimal excitation pulse width for interference-free H atom detection depends on the relative concentrations of hydrogen atoms and photolytic precursors, the flame temperature, and the laser path length within the flame. © 2008 Optical Society of America.

More Details

A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow

Proposed for publication in Combustion and Flame.

Yoo, Chunsang N.; Chen, Jacqueline H.; Frank, Jonathan H.

Combined experimental and numerical studies of the transient response of ignition to strained flows require a well-characterized ignition trigger. Laser deposition of a small radical pool provides a reliable method for initiating ignition of mixtures that are near the ignition limit. Two-dimensional direct numerical simulations are used to quantify the sensitivity of ignition kernel formation and subsequent edge-flame propagation to the oxidizer temperature and the initial width and amplitude of O-atom deposition used to trigger ignition in an axisymmetric counterflow of heated air versus ambient hydrogen/nitrogen. The ignition delay and super-equilibrium OH concentration in the nascent ignition kernel are highly sensitive to variations in these initial conditions. The ignition delay decreases as the amplitude of the initial O-atom deposition increases. The spatial distribution and the magnitude of the OH overshoot are governed by multi-dimensional effects. The degree of OH overshoot near the burner centerline increases as the diameter of the initial O-atom deposition region decreases. This result is attributed to preferential diffusion of hydrogen in the highly curved leading portion of the edge flame that is established following thermal runaway. The edge-flame speed and OH overshoot at the leading edge of the edge flame are relatively insensitive to variations in the initial conditions of the ignition. The steady edge-flame speed is approximately twice the corresponding laminar flame speed. The rate at which the edge flame approaches its steady state is insensitive to the initial conditions and depends solely on the diffusion time scale at the edge flame. The edge flame is curved toward the heated oxidizer stream as a result of differences in the chemical kinetics between the leading edge and the trailing diffusion flame. The structure of the highly diluted diffusion flame considered in this study corresponds to Linan's 'premixed flame regime' in which only the oxidizer leaks through the reaction zone such that the flame is located at fuel lean rather than stoichiometric mixture fraction conditions.

More Details

Imaging of dissipative structures in the near field of a turbulent non-premixed jet flame

Proceedings of the Combustion Institute

Kaiser, Sebastian A.; Frank, Jonathan H.

Two-dimensional laser Rayleigh measurements of thermal gradient structures are performed in a turbulent non-premixed jet flame. The measurements focus on the near field (10 nozzle diameters downstream of the jet exit) where traditional scaling laws from the self-similar far field of non-reacting jets are not necessarily applicable. The optical performance of the high-resolution imaging system is characterized. The square of the temperature gradient field is analyzed by calculating the power spectral density (PSD) and by directly measuring the thicknesses of the layer-like structures. Fully resolved spectra extending over three orders of magnitude in PSD are obtained using a new noise cancellation technique. Some spatial filtering (smoothing) is necessary to reliably measure the layer-normal structure widths in the images. The probability density function (PDF) of the layer widths is found to be approximately log-normal. The PDFs of the 20-percent-full-width layer thicknesses have peak values at 216 and 368 μm for rid = 0 and r/d=1, respectively. The peak of the layer-thickness probability density function (PDF) occurs at a length scale where the PSD is at approximately 0.5 percent of its maximum in both the low-temperature centerline region and the region near the maximum mean temperature. © 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

More Details
Results 51–60 of 60
Results 51–60 of 60