Publications

Results 201–268 of 268
Skip to search filters

Initial performance of fully-coupled AMG and approximate block factorization preconditioners for solution of implicit FE resistive MHD

Shadid, John N.

This brief paper explores the development of scalable, nonlinear, fully-implicit solution methods for a stabilized unstructured finite element (FE) discretization of the 2D incompressible (reduced) resistive MHD system. The discussion considers the stabilized FE formulation in context of a fully-implicit time integration and direct-to-steady-state solution capability. The nonlinear solver strategy employs Newton-Krylov methods, which are preconditioned using fully-coupled algebraic multilevel (AMG) techniques and a new approximate block factorization (ABF) preconditioner. The intent of these preconditioners is to enable robust, scalable and efficient solution approaches for the large-scale sparse linear systems generated by the Newton linearization. We present results for the fully-coupled AMG preconditioner for two prototype problems, a low Lundquist number MHD Faraday conduction pump and moderately-high Lundquist number incompressible magnetic island coalescence problem. For the MHD pump results we explore the scaling of the fully-coupled AMG preconditioner for up to 4096 processors for problems with up to 64M unknowns on a CrayXT3/4. Using the island coalescence problem we explore the weak scaling of the AMG preconditioner and the influence of the Lundquist number on the iteration count. Finally we present some very recent results for the algorithmic scaling of the ABF preconditioner.

More Details

Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling

Journal of Computational Physics

Lin, Paul T.; Shadid, John N.; Sala, Marzio; Tuminaro, Raymond S.; Hennigan, Gary L.; Hoekstra, Robert J.

In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system is obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 108 unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system. © 2009 Elsevier Inc. All rights reserved.

More Details

Performance of an MPI-only semiconductor device simulator on a quad socket/quad core InfiniBand platform

Shadid, John N.

This preliminary study considers the scaling and performance of a finite element (FE) semiconductor device simulator on a capacity cluster with 272 compute nodes based on a homogeneous multicore node architecture utilizing 16 cores. The inter-node communication backbone for this Tri-Lab Linux Capacity Cluster (TLCC) machine is comprised of an InfiniBand interconnect. The nonuniform memory access (NUMA) nodes consist of 2.2 GHz quad socket/quad core AMD Opteron processors. The performance results for this study are obtained with a FE semiconductor device simulation code (Charon) that is based on a fully-coupled Newton-Krylov solver with domain decomposition and multilevel preconditioners. Scaling and multicore performance results are presented for large-scale problems of 100+ million unknowns on up to 4096 cores. A parallel scaling comparison is also presented with the Cray XT3/4 Red Storm capability platform. The results indicate that an MPI-only programming model for utilizing the multicore nodes is reasonably efficient on all 16 cores per compute node. However, the results also indicated that the multilevel preconditioner, which is critical for large-scale capability type simulations, scales better on the Red Storm machine than the TLCC machine.

More Details

Inexact newton dogleg methods

SIAM Journal on Numerical Analysis

Pawlowski, Roger P.; Simonis, Joseph P.; Walker, Homer F.; Shadid, John N.

The dogleg method is a classical trust-region technique for globalizing Newton's method. While it is widely used in optimization, including large-scale optimization via truncated-Newton approaches, its implementation in general inexact Newton methods for systems of nonlinear equations can be problematic. In this paper, we first outline a very general dogleg method suitable for the general inexact Newton context and provide a global convergence analysis for it. We then discuss certain issues that may arise with the standard dogleg implementational strategy and propose modified strategies that address them. Newton-Krylov methods have provided important motivation for this work, and we conclude with a report on numerical experiments involving a Newton-GMRES dogleg method applied to benchmark CFD problems. © 2008 Society for Industrial and Applied Mathematics.

More Details

A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations

Journal of Computational Physics

Elman, Howard; Howle, Victoria E.; Shadid, John N.; Shuttleworth, Robert R.; Tuminaro, Raymond S.

In recent years, considerable effort has been placed on developing efficient and robust solution algorithms for the incompressible Navier-Stokes equations based on preconditioned Krylov methods. These include physics-based methods, such as SIMPLE, and purely algebraic preconditioners based on the approximation of the Schur complement. All these techniques can be represented as approximate block factorization (ABF) type preconditioners. The goal is to decompose the application of the preconditioner into simplified sub-systems in which scalable multi-level type solvers can be applied. In this paper we develop a taxonomy of these ideas based on an adaptation of a generalized approximate factorization of the Navier-Stokes system first presented in [A. Quarteroni, F. Saleri, A. Veneziani, Factorization methods for the numerical approximation of Navier-Stokes equations, Computational Methods in Applied Mechanical Engineering 188 (2000) 505-526]. This taxonomy illuminates the similarities and differences among these preconditioners and the central role played by efficient approximation of certain Schur complement operators. We then present a parallel computational study that examines the performance of these methods and compares them to an additive Schwarz domain decomposition (DD) algorithm. Results are presented for two and three-dimensional steady state problems for enclosed domains and inflow/outflow systems on both structured and unstructured meshes. The numerical experiments are performed using MPSalsa, a stabilized finite element code. © 2007 Elsevier Inc. All rights reserved.

More Details

Simulation of neutron radiation damage in silicon semiconductor devices

Hoekstra, Robert J.; Castro, Joseph P.; Shadid, John N.; Fixel, Deborah A.

A code, Charon, is described which simulates the effects that neutron damage has on silicon semiconductor devices. The code uses a stabilized, finite-element discretization of the semiconductor drift-diffusion equations. The mathematical model used to simulate semiconductor devices in both normal and radiation environments will be described. Modeling of defect complexes is accomplished by adding an additional drift-diffusion equation for each of the defect species. Additionally, details are given describing how Charon can efficiently solve very large problems using modern parallel computers. Comparison between Charon and experiment will be given, as well as comparison with results from commercially-available TCAD codes.

More Details

Algebraic multilevel preconditioners for nonsymmetric PDEs on stretched grids

Lecture Notes in Computational Science and Engineering

Sala, Marzio; Lin, Paul L.; Shadid, John N.; Tuminaro, Raymond S.

We report on algebraic multilevel preconditioners for the parallel solution of linear systems arising from a Newton procedure applied to the finite-element (FE) discretization of the incompressible Navier-Stokes equations. We focus on the issue of how to coarsen FE operators produced from high aspect ratio elements.

More Details

A comparison of Navier Stokes and network models to predict chemical transport in municipal water distribution systems

World Water Congress 2005: Impacts of Global Climate Change - Proceedings of the 2005 World Water and Environmental Resources Congress

Van Bloemen Waanders, B.; Hammond, G.; Shadid, John N.; Collis, S.; Murray, R.

We investigate the accuracy of chemical transport in network models for small geometric configurations. Network model have successfully simulated the general operations of large water distribution systems. However, some of the simplifying assumptions associated with the implementation may cause inaccuracies if chemicals need to be carefully characterized at a high level of detail. In particular, we are interested in precise transport behavior so that inversion and control problems can be applied to water distribution networks. As an initial phase, Navier Stokes combined with a convection-diffusion formulation was used to characterize the mixing behavior at a pipe intersection in two dimensions. Our numerical models predict only on the order of 12-14 % of the chemical to be mixed with the other inlet pipe. Laboratory results show similar behavior and suggest that even if our numerical model is able to resolve turbulence, it may not improve the mixing behavior. This conclusion may not be appropriate however for other sets of operating conditions, and therefore we have started to develop a 3D implementation. Preliminary results for duct geometry are presented. © copyright ASCE 2005.

More Details

An improved convergence bound for aggregation-based domain decomposition preconditioners

Proposed for publication in the SIAM Journal on Matrix Analysis and Applications.

Sala, Marzio S.; Shadid, John N.; Tuminaro, Raymond S.

In this paper we present a two-level overlapping domain decomposition preconditioner for the finite-element discretization of elliptic problems in two and three dimensions. The computational domain is partitioned into overlapping subdomains, and a coarse space correction, based on aggregation techniques, is added. Our definition of the coarse space does not require the introduction of a coarse grid. We consider a set of assumptions on the coarse basis functions to bound the condition number of the resulting preconditioned system. These assumptions involve only geometrical quantities associated with the aggregates and the subdomains. We prove that the condition number using the two-level additive Schwarz preconditioner is O(H/{delta} + H{sub 0}/{delta}), where H and H{sub 0} are the diameters of the subdomains and the aggregates, respectively, and {delta} is the overlap among the subdomains and the aggregates. This extends the bounds presented in [C. Lasser and A. Toselli, Convergence of some two-level overlapping domain decomposition preconditioners with smoothed aggregation coarse spaces, in Recent Developments in Domain Decomposition Methods, Lecture Notes in Comput. Sci. Engrg. 23, L. Pavarino and A. Toselli, eds., Springer-Verlag, Berlin, 2002, pp. 95-117; M. Sala, Domain Decomposition Preconditioners: Theoretical Properties, Application to the Compressible Euler Equations, Parallel Aspects, Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 2003; M. Sala, Math. Model. Numer. Anal., 38 (2004), pp. 765-780]. Numerical experiments on a model problem are reported to illustrate the performance of the proposed preconditioner.

More Details

Large-scale stabilized FE computational analysis of nonlinear steady state transport/reaction systems

Proposed for publication in Computer Methods in Applied Mechanics and Engineering.

Shadid, John N.; Salinger, Andrew G.; Pawlowski, Roger P.; Lin, Paul L.; Hennigan, Gary L.; Tuminaro, Raymond S.; Lehoucq, Richard B.

The solution of the governing steady transport equations for momentum, heat and mass transfer in fluids undergoing non-equilibrium chemical reactions can be extremely challenging. The difficulties arise from both the complexity of the nonlinear solution behavior as well as the nonlinear, coupled, non-symmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this paper, we briefly review progress on developing a stabilized finite element (FE) capability for numerical solution of these challenging problems. The discussion considers the stabilized FE formulation for the low Mach number Navier-Stokes equations with heat and mass transport with non-equilibrium chemical reactions, and the solution methods necessary for detailed analysis of these complex systems. The solution algorithms include robust nonlinear and linear solution schemes, parameter continuation methods, and linear stability analysis techniques. Our discussion considers computational efficiency, scalability, and some implementation issues of the solution methods. Computational results are presented for a CFD benchmark problem as well as for a number of large-scale, 2D and 3D, engineering transport/reaction applications.

More Details

Large-scale stabilized FE computational analysis of nonlinear steady state transport/reaction systems

Proposed for publication in Computation Methods in Applied Mechanics and Engineering.

Shadid, John N.; Salinger, Andrew G.; Pawlowski, Roger P.; Lin, Paul L.; Hennigan, Gary L.; Tuminaro, Raymond S.; Lehoucq, Richard B.

The solution of the governing steady transport equations for momentum, heat and mass transfer in fluids undergoing non-equilibrium chemical reactions can be extremely challenging. The difficulties arise from both the complexity of the nonlinear solution behavior as well as the nonlinear, coupled, non-symmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this paper, we briefly review progress on developing a stabilized finite element ( FE) capability for numerical solution of these challenging problems. The discussion considers the stabilized FE formulation for the low Mach number Navier-Stokes equations with heat and mass transport with non-equilibrium chemical reactions, and the solution methods necessary for detailed analysis of these complex systems. The solution algorithms include robust nonlinear and linear solution schemes, parameter continuation methods, and linear stability analysis techniques. Our discussion considers computational efficiency, scalability, and some implementation issues of the solution methods. Computational results are presented for a CFD benchmark problem as well as for a number of large-scale, 2D and 3D, engineering transport/reaction applications.

More Details

Performance of fully-coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport

Proposed for publication in International Journal for Numerical Methods in Engineering.

Sala, Marzio S.; Shadid, John N.; Tuminaro, Raymond S.

This study investigates algebraic multilevel domain decomposition preconditioners of the Schwarz type for solving linear systems associated with Newton-Krylov methods. The key component of the preconditioner is a coarse approximation based on algebraic multigrid ideas to approximate the global behavior of the linear system. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the non-zero block structure of the Jacobian matrix. The scalability of the preconditioner is presented as well as comparisons with a two-level Schwarz preconditioner using a geometric coarse grid operator. These comparisons are obtained on large-scale distributed-memory parallel machines for systems arising from incompressible flow and transport using a stabilized finite element formulation. The results demonstrate the influence of the smoothers and coarse level solvers for a set of 3D example problems. For preconditioners with more than one level, careful attention needs to be given to the balance of robustness and convergence rate for the smoothers and the cost of applying these methods. For properly chosen parameters, the two- and three-level preconditioners are demonstrated to be scalable to 1024 processors.

More Details

Acceleration of the Generialized Global Basis (GGB) method for nonlinear problems

Proposed for publication in Journal of Computational Physics.

Tuminaro, Raymond S.; Shadid, John N.

Two heuristic strategies intended to enhance the performance of the generalized global basis (GGB) method [H. Waisman, J. Fish, R.S. Tuminaro, J. Shadid, The Generalized Global Basis (GGB) method, International Journal for Numerical Methods in Engineering 61(8), 1243-1269] applied to nonlinear systems are presented. The standard GGB accelerates a multigrid scheme by an additional coarse grid correction that filters out slowly converging modes. This correction requires a potentially costly eigen calculation. This paper considers reusing previously computed eigenspace information. The GGB? scheme enriches the prolongation operator with new eigenvectors while the modified method (MGGB) selectively reuses the same prolongation. Both methods use the criteria of principal angles between subspaces spanned between the previous and current prolongation operators. Numerical examples clearly indicate significant time savings in particular for the MGGB scheme.

More Details

A mathematical framework for multiscale science and engineering : the variational multiscale method and interscale transfer operators

Bochev, Pavel B.; Christon, Mark A.; Collis, Samuel S.; Lehoucq, Richard B.; Shadid, John N.; Slepoy, Alexander S.

Existing approaches in multiscale science and engineering have evolved from a range of ideas and solutions that are reflective of their original problem domains. As a result, research in multiscale science has followed widely diverse and disjoint paths, which presents a barrier to cross pollination of ideas and application of methods outside their application domains. The status of the research environment calls for an abstract mathematical framework that can provide a common language to formulate and analyze multiscale problems across a range of scientific and engineering disciplines. In such a framework, critical common issues arising in multiscale problems can be identified, explored and characterized in an abstract setting. This type of overarching approach would allow categorization and clarification of existing models and approximations in a landscape of seemingly disjoint, mutually exclusive and ad hoc methods. More importantly, such an approach can provide context for both the development of new techniques and their critical examination. As with any new mathematical framework, it is necessary to demonstrate its viability on problems of practical importance. At Sandia, lab-centric, prototype application problems in fluid mechanics, reacting flows, magnetohydrodynamics (MHD), shock hydrodynamics and materials science span an important subset of DOE Office of Science applications and form an ideal proving ground for new approaches in multiscale science.

More Details

Stability of Streamline Upwind Petrov-Galerkin (SUPG) finite elements for transient advection-diffusion problems

Proposed for publication in Journal of Computer Methods in Application and Mechanical Engineering.

Bochev, Pavel B.; Bochev, Pavel B.; Gunzburger, Max D.; Shadid, John N.

Implicit time integration coupled with SUPG discretization in space leads to additional terms that provide consistency and improve the phase accuracy for convection dominated flows. Recently, it has been suggested that for small Courant numbers these terms may dominate the streamline diffusion term, ostensibly causing destabilization of the SUPG method. While consistent with a straightforward finite element stability analysis, this contention is not supported by computational experiments and contradicts earlier Von-Neumann stability analyses of the semidiscrete SUPG equations. This prompts us to re-examine finite element stability of the fully discrete SUPG equations. A careful analysis of the additional terms reveals that, regardless of the time step size, they are always dominated by the consistent mass matrix. Consequently, SUPG cannot be destabilized for small Courant numbers. Numerical results that illustrate our conclusions are reported.

More Details

Applications of Transport/Reaction Codes to Problems in Cell Modeling

Means, Shawn A.; Rintoul, Mark D.; Shadid, John N.; Rintoul, Mark D.

We demonstrate two specific examples that show how our exiting capabilities in solving large systems of partial differential equations associated with transport/reaction systems can be easily applied to outstanding problems in computational biology. First, we examine a three-dimensional model for calcium wave propagation in a Xenopus Laevis frog egg and verify that a proposed model for the distribution of calcium release sites agrees with experimental results as a function of both space and time. Next, we create a model of the neuron's terminus based on experimental observations and show that the sodium-calcium exchanger is not the route of sodium's modulation of neurotransmitter release. These state-of-the-art simulations were performed on massively parallel platforms and required almost no modification of existing Sandia codes.

More Details
Results 201–268 of 268
Results 201–268 of 268