Publications

Results 26–32 of 32
Skip to search filters

Effects of chain stiffness and penetrant size on penetrant diffusion in simple polymers: Deduced relations from simulation and PRISM theory

Polymer

Budzien, Joanne; McCoy, John D.; Rottach, Dana; Curro, John G.

Molecular dynamics simulations in the NVT ensemble were performed for a repulsive system of bead-spring polymer chains with angle constraints. The diffusion coefficients of spherical penetrants were measured for different size penetrants as the angle constraints were varied. The scaling of the diffusion coefficient with penetrant size varies as a function of chain stiffness from liquid-like behavior to polymeric behavior. Free volume distributions were calculated from both simulation and PRISM theory. It is found that free volume distributions and mean void size are constant with chain stiffness although the diffusion coefficient changes by a factor of two. This suggests that while free volume is necessary for diffusion to occur, binary collisions and chain relaxation also play a role in determining penetrant diffusion. The relative contributions of these factors to the diffusion coefficient may change as a function of chain stiffness. © 2004 Elsevier Ltd. All rights reserved.

More Details

Molecular Self-Assembly

Curro, John G.; McCoy, John D.; Frischknecht, Amalie F.

This report is divided into two parts: a study of the glass transition in confined geometries, and formation mechanisms of block copolymer mesophases by solvent evaporation-induced self-assembly. The effect of geometrical confinement on the glass transition of polymers is a very important consideration for applications of polymers in nanotechnology applications. We hypothesize that the shift of the glass transition temperature of polymers in confined geometries can be attributed to the inhomogeneous density profile of the liquid. Accordingly, we assume that the glass temperature in the inhomogeneous state can be approximated by the Tg of a corresponding homogeneous, bulk polymer, but at a density equal to the average density of the inhomogeneous system. Simple models based on this hypothesis give results that are in remarkable agreement with experimental measurements of the glass transition of confined liquids. Evaporation-induced self-assembly (EISA) of block copolymers is a versatile process for producing novel, nanostructured materials and is the focus of much of the experimental work at Sandia in the Brinker group. In the EISA process, as the solvent preferentially evaporates from a cast film, two possible scenarios can occur: microphase separation or micellization of the block copolymers in solution. In the present investigation, we established the conditions that dictate which scenario takes place. Our approach makes use of scaling arguments to determine whether the overlap concentration c* occurs before or after the critical micelle concentration (CMC). These theoretical arguments are used to interpret recent experimental results of Yu and collaborators on EISA experiments on Silica/PS-PEO systems.

More Details
Results 26–32 of 32
Results 26–32 of 32