Publications

Results 126–150 of 168
Skip to search filters

Nanoantenna-enabled midwave infrared focal plane arrays

Proceedings of SPIE - The International Society for Optical Engineering

Peters, D.W.; Reinke, Charles M.; Davids, Paul D.; Klem, John F.; Leonhardt, Darin L.; Wendt, J.R.; Kim, Jin K.; Samora, S.

We demonstrate the effects of integrating a nanoantenna to a midwave infrared (MWIR) focal plane array (FPA). We model an antenna-coupled photodetector with a nanoantenna fabricated in close proximity to the active material of a photodetector. This proximity allows us to take advantage of the concentrated plasmonic fields of the nanoantenna. The role of the nanoantenna is to convert free-space plane waves into surface plasmons bound to a patterned metal surface. These plasmonic fields are concentrated in a small volume near the metal surface. Field concentration allows for a thinner layer of absorbing material to be used in the photodetector design and promises improvements in cutoff wavelength and dark current (higher operating temperature). While the nanoantenna concept may be applied to any active photodetector material, we chose to integrate the nanoantenna with an InAsSb photodiode. The geometry of the nanoantenna-coupled detector is optimized to give maximal carrier generation in the active region of the photodiode, and fabrication processes must be altered to accommodate the nanoantenna structure. The intensity profiles and the carrier generation rates in the photodetector active layers are determined by finite element method simulations, and iteration between optical nanoantenna simulation and detector modeling is used to optimize the device structure. © 2012 SPIE.

More Details

Comparison of nBn and nBp mid-wave barrier infrared photodetectors

Proceedings of SPIE - The International Society for Optical Engineering

Klem, John F.; Kim, Jin K.; Cich, M.J.; Hawkins, Samuel D.; Fortune, T.R.; Rienstra, Jeffrey L.

We have fabricated mid-wave infrared photodetectors containing InAsSb absorber regions and AlAsSb barriers in n-barrier-n (nBn) and n-barrier-p (nBp) configurations, and characterized them by current-voltage, photocurrent, and capacitance-voltage measurements in the 100-200 K temperature range. Efficient collection of photocurrent in the nBn structure requires application of a small reverse bias resulting in a minimum dark current, while the nBp devices have high responsivity at zero bias. When biasing both types of devices for equal dark currents, the nBn structure exhibits a differential resistance significantly higher than the nBp, although the nBp device may be biased for arbitrarily low dark current at the expense of much lower dynamic resistance. Capacitance-voltage measurements allow determination of the electron concentration in the unintentionally-doped absorber material, and demonstrate the existence of an electron accumulation layer at the absorber/barrier interface in the nBn device. Numerical simulations of idealized nBn devices demonstrate that photocurrent collection is possible under conditions of minimal absorber region depletion, thereby strongly suppressing depletion region Shockley-Read-Hall generation. © 2010 Copyright SPIE - The International Society for Optical Engineering.

More Details

Characterization of single barrier microrefrigerators at cryogenic temperatures

Journal of Electronic Materials

Wang, X.; Ezzahri, Y.; Bian, Z.; Zebarjadi, M.; Shakouri, A.; Klem, John F.; Patrizi, G.A.; Young, Erik W.; Mukherjee, Sayan M.

The experimental characterization of single barrier heterostructure thermionic cooling devices at cryogenic temperatures is reported. The device studied was a cylindrical InGaAs microrefrigerator, in which the active layer was a 1 μm thick In 0.527Al 0.218Ga 0.255As heterostructure barrier with n-type doping concentration of 6.68 × 10 16 cm -3 and an In 0.53Ga 0.47As emitter/collector of 5 × 10 18 cm -3 n-doping. A full field thermoreflectance imaging technique was used to measure the distribution of temperature change on the device's top surface when different current excitation values were applied. By reversing the current direction, we studied the device's behavior in both cooling and heating regimes. At an ambient temperature of 100 K, a maximum cooling of 0.6 K was measured. This value was approximately one-third of the measured maximum cooling value at room temperature (1.8 K). The paper describes the device's structure and the first reported thermal imaging at cryogenic temperatures using the thermoreflectance technique. © 2009 The Author(s).

More Details

Growth, fabrication, and characterization of high-speed 1550-nm S-SEEDs for all-optical logic

ECS Transactions

Keeler, Gordon A.; Serkland, Darwin K.; Overberg, Mark E.; Klem, John F.; Geib, K.M.; Clevenger, Jascinda C.; Hsu, Alan Y.; Hadley, G.R.

We describe recent advances in the development of 1550-nm symmetric self-electrooptic effect devices (S-SEEDs). S-SEEDs are semiconductor optoelectronic devices used to implement ultrafast all-optical logic functions: for optical fiber communication applications. In this paper, basic S-SEED operation is described, followed by a detailed explanation of the optimization techniques used to improve DC and high-speed performance in these long wavelength devices. Both epitaxial strain and quantum well design are shown to be important for S-SEEDs grown in the InAlGaAs quaternary material system. The device fabrication approach is outlined, and DC electrical and optical performance is discussed. Finally, we describe the high-speed optoelectronic measurements used to determine S-SEED switching characteristics. The devices described herein are the first known S-SEEDs to operate at telecommunications- compatible wavelengths and demonstrate record switching speeds with rail-to-rail switching rates faster than 6 picoseconds. © The Electrochemical Society.

More Details

Microfabricated wire arrays for Z-pinch

Cich, Michael C.; Klem, John F.; Spahn, Olga B.; Peake, Gregory M.; Rowen, Adam M.; Nash, Thomas J.

Microfabrication methods have been applied to the fabrication of wire arrays suitable for use in Z. Self-curling GaAs/AlGaAs supports were fabricated as an initial route to make small wire arrays (4mm diameter). A strain relief structure that could be integrated with the wire was designed to allow displacements of the anode/cathode connections in Z. Electroplated gold wire arrays with integrated anode/cathode bus connections were found to be sufficiently robust to allow direct handling. Platinum and copper plating processes were also investigated. A process to fabricate wire arrays on any substrate with wire thickness up to 35 microns was developed. Methods to handle and mount these arrays were developed. Fabrication of wire arrays of 20mm diameter was demonstrated, and the path to 40mm array fabrication is clear. With some final investment to show array mounting into Z hardware, the entire process to produce a microfabricated wire array will have been demonstrated.

More Details

Improved manufacturability of AlGaAs/GaAs Pnp heterojunction bipolar transistors

ECS Transactions

Clevenger, J.B.; Patrizi, G.A.; Peterson, T.C.; Cich, M.J.; Baca, A.G.; Klem, John F.; Plut, Thomas A.; Fortune, T.R.; Hightower, M.S.; Torres, D.; Hawkins, Samuel D.; Sullivan, Charles T.

Specially designed Pnp heterojunction bipolar transistors (HBT's) in the AlGaAs/GaAs material system can offer improved radiation response over commercially-available silicon bipolar junction transistors (BJT's). To be a viable alternative to the silicon Pnp BJT, improvements to the manufacturability of the HBT were required. Utilization of a Pd/Ge/Au non-spiking ohmic contact to the base and implementation of a PECVD silicon nitride hard mask for wet etch control were the primary developments that led to a more reliable fabrication process. The implementation of the silicon nitride hard mask and the subsequent process improvements increased the average electrical yield from 43% to 90%. © The Electrochemical Society.

More Details

Final report on LDRD project : single-photon-sensitive imaging detector arrays at 1600 nm

Serkland, Darwin K.; Childs, Kenton D.; Koudelka, Robert K.; Geib, K.M.; Klem, John F.; Hawkins, Samuel D.; Patel, Rupal K.

The key need that this project has addressed is a short-wave infrared light detector for ranging (LIDAR) imaging at temperatures greater than 100K, as desired by nonproliferation and work for other customers. Several novel device structures to improve avalanche photodiodes (APDs) were fabricated to achieve the desired APD performance. A primary challenge to achieving high sensitivity APDs at 1550 nm is that the small band-gap materials (e.g., InGaAs or Ge) necessary to detect low-energy photons exhibit higher dark counts and higher multiplication noise compared to materials like silicon. To overcome these historical problems APDs were designed and fabricated using separate absorption and multiplication (SAM) regions. The absorption regions used (InGaAs or Ge) to leverage these materials 1550 nm sensitivity. Geiger mode detection was chosen to circumvent gain noise issues in the III-V and Ge multiplication regions, while a novel Ge/Si device was built to examine the utility of transferring photoelectrons in a silicon multiplication region. Silicon is known to have very good analog and GM multiplication properties. The proposed devices represented a high-risk for high-reward approach. Therefore one primary goal of this work was to experimentally resolve uncertainty about the novel APD structures. This work specifically examined three different designs. An InGaAs/InAlAs Geiger mode (GM) structure was proposed for the superior multiplication properties of the InAlAs. The hypothesis to be tested in this structure was whether InAlAs really presented an advantage in GM. A Ge/Si SAM was proposed representing the best possible multiplication material (i.e., silicon), however, significant uncertainty existed about both the Ge material quality and the ability to transfer photoelectrons across the Ge/Si interface. Finally a third pure germanium GM structure was proposed because bulk germanium has been reported to have better dark count properties. However, significant uncertainty existed about the quantum efficiency at 1550 nm the necessary operating temperature. This project has resulted in several conclusions after fabrication and measurement of the proposed structures. We have successfully demonstrated the Ge/Si proof-of-concept in producing high analog gain in a silicon region while absorbing in a Ge region. This has included significant Ge processing infrastructure development at Sandia. However, sensitivity is limited at low temperatures due to high dark currents that we ascribe to tunneling. This leaves remaining uncertainty about whether this structure can achieve the desired performance with further development. GM detection in InGaAs/InAlAs, Ge/Si, Si and pure Ge devices fabricated at Sandia was shown to overcome gain noise challenges, which represents critical learning that will enable Sandia to respond to future single photon detection needs. However, challenges to the operation of these devices in GM remain. The InAlAs multiplication region was not found to be significantly superior to current InP regions for GM, however, improved multiplication region design of InGaAs/InP APDs has been highlighted. For Ge GM detectors it still remains unclear whether an optimal trade-off of parameters can achieve the necessary sensitivity at 1550 nm. To further examine these remaining questions, as well as other application spaces for these technologies, funding for an Intelligence Community post-doc was awarded this year.

More Details

In-situ optical time-domain reflectometry (OTDR) for VCSEL-based communication systems

Proceedings of SPIE - The International Society for Optical Engineering

Keeler, Gordon A.; Serkland, Darwin K.; Geib, K.M.; Klem, John F.; Peake, Gregory M.

Optical lime-domain reflectometry (OTDR) is an effeclive technique for locating faults in fiber communication links. The fact that most OTDR measurements are performed manually is a significant drawback, because it makes them too costly for use in many short-distance networks and too slow for use in military avionic platforms. Here we describe and demonstrate an automated, low-cost, real-time approach to fault monitoring that can be achieved by integrating OTDR functionality directly into VCSEL-based transceivers. This built-in test capability is straightforward to implement and relevant to both multimode and single mode networks. In-situ OTDR uses the transmitter VCSEL already present in data transceivers. Fault monitoring is performed by emitting a brief optical pulse into the fiber and then turning the VCSEL off. If a fault exists, a portion of the optical pulse returns to the transceiver after a time equal to the round-trip delay through the fiber. In multimode OTDR, the signal is detected by an integrated photodetector, while in single mode OTDR the VCSEL itself can be used as a detector. Modified driver electronics perform the measurement and analysis. We demonstrate that VCSEL-based OTDR has sufficient sensitivity to determine the location of most faults commonly seen in short-haul networks (i.e., the Fresnel reflections from improperly terminated fibers and scattering from raggedly-broken fibers). Results are described for single mode and multimode experiments, at both 850 nm and 1.3 μm. We discuss the resolution and sensitivity that have been achieved, as well as expected limitations for this novel approach to network monitoring.

More Details
Results 126–150 of 168
Results 126–150 of 168