InAs-based interband cascade lasers (ICLs) can be more easily adapted toward long wavelength operation than their GaSb counterparts. Devices made from two recent ICL wafers with an advanced waveguide structure are reported, which demonstrate improved device performance in terms of reduced threshold current densities for ICLs near 11 μm or extended operating wavelength beyond 13 μm. The ICLs near 11 μm yielded a significantly reduced continuous wave (cw) lasing threshold of 23 A/cm2 at 80 K with substantially increased cw output power, compared with previously reported ICLs at similar wavelengths. ICLs made from the second wafer incorporated an innovative quantum well active region, comprised of InAsP layers, and lased in the pulsed-mode up to 120 K at 13.2 μm, which is the longest wavelength achieved for III-V interband lasers.
Enhancing the efficiency of second-harmonic generation using all-dielectric metasurfaces to date has mostly focused on electromagnetic engineering of optical modes in the meta-atom. Further advances in nonlinear conversion efficiencies can be gained by engineering the material nonlinearities at the nanoscale, however this cannot be achieved using conventional materials. Semiconductor heterostructures that support resonant nonlinearities using quantum engineered intersubband transitions can provide this new degree of freedom. By simultaneously optimizing the heterostructures and meta-atoms, we experimentally realize an all-dielectric polaritonic metasurface with a maximum second-harmonic generation power conversion factor of 0.5 mW/W2 and power conversion efficiencies of 0.015% at nominal pump intensities of 11 kW/cm2. These conversion efficiencies are higher than the record values reported to date in all-dielectric nonlinear metasurfaces but with 3 orders of magnitude lower pump power. Our results therefore open a new direction for designing efficient nonlinear all-dielectric metasurfaces for new classical and quantum light sources.
We demonstrate an extremely nonlinear all-dielectric metasurface that employs intersubband polaritons to achieve a second-harmonic conversion coefficient of 5 x 10-4 W-1 and second-harmonic power conversion efficiency of 0.015% at nominal pump intensities of 11 kW/cm2. Furthermore, through heterostructure design, we achieve microscopic control of the nonlinearity and demonstrate suppression or enhancement of second-harmonic generation by controlling the polarity of the resonant χ(2).
Carrasco, Rigo A.; Morath, Christian P.; Grant, Perry C.; Ariyawansa, Gamini; Stephenson, Chad A.; Kadlec, Clark N.; Hawkins, Samuel D.; Klem, John F.; Shaner, Eric A.; Steenbergen, Elizabeth H.; Schaefer, Stephen T.; Johnson, Shane R.; Webster, Preston T.
Gallium is incorporated into the strain-balanced In(Ga)As/InAsSb superlattice system to achieve the same mid-wave infrared cutoff tunability as conventional Ga-free InAs/InAsSb type-II superlattices, but with an additional degree of design freedom to enable optimization of absorption and transport properties. Time-resolved photoluminescence measurements of InGaAs/InAsSb superlattice characterization- and doped device structures are reported from 77 to 300 K and compared to InAs/InAsSb. The low-injection photoluminescence decay yields the minority carrier lifetime, which is analyzed with a recombination rate model, enabling the determination of the temperature-dependent Shockley-Read-Hall, radiative, and Auger recombination lifetimes and extraction of defect energy levels and capture cross section defect concentration products. The Shockley-Read-Hall-limited lifetime of undoped InGaAs/InAsSb is marginally reduced from 2.3 to 1.4 μs due to the inclusion of Ga; however, given that Ga improves the vertical hole mobility by a factor of >10×, a diffusion-limited InGaAs/InAsSb superlattice nBn could expect a lower bound of 2.5× improvement in diffusion length with significant impact on photodetector quantum efficiency and radiation hardness. At temperatures below 120 K, the doped device structures are Shockley-Read-Hall limited at 0.5 μs, which shows promise for detector applications.
Mie-resonant dielectric metasurfaces are excellent candidates for both fundamental studies related to light-matter interactions and for numerous applications ranging from holography to sensing to nonlinear optics. To date, however, most applications using Mie metasurfaces utilize only weak light-matter interaction. Here, we go beyond the weak coupling regime and demonstrate for the first time strong polaritonic coupling between Mie photonic modes and intersubband (ISB) transitions in semiconductor heterostructures. Furthermore, along with demonstrating ISB polaritons with Rabi splitting as large as 10%, we also demonstrate the ability to tailor the strength of strong coupling by engineering either the semiconductor heterostructure or the photonic mode of the resonators. Unlike previous plasmonic-based works, our new all-dielectric metasurface approach to generate ISB polaritons is free from ohmic losses and has high optical damage thresholds, thereby making it ideal for creating novel and compact mid-infrared light sources based on nonlinear optics.
We have fabricated and characterized AlInAsSb- and InPAsSb-absorber nBn infrared detectors with 200 K cutoff wavelengths from 2.55 to 3.25 μm. Minority-carrier lifetimes determined by microwave reflectance measurements were 0.2-1.0 μs in doped n-type absorber materials. Devices having 4 μm thick absorbers exhibited sharp cutoff at wavelengths of 2.9 μm or longer and softer cutoff at shorter wavelengths. Top-illuminated devices with n+ InAs window/contact layers had external quantum efficiencies of 40-50% without anti-reflection coating at 50 mV reverse bias and wavelengths slightly shorter than cutoff. Despite the shallow-etch mesa nBn design, perimeter currents contributed significantly to the 200 K dark current. Dark currents for InPAsSb devices were lower than AlInAsSb devices with similar cutoff wavelengths. For unoptimized InPAsSb devices with 2.55 μm cutoff, 200 K areal and perimeter dark current densities at -0.2 V bias in devices of various sizes were approximately 1x10-7 A/cm2 and 1.4x10-8 A/cm, respectively.
Here, the design, fabrication, and characterization of an actively tunable long-wave infrared detector, made possible through direct integration of a graphene-enabled metasurface with a conventional type-II superlattice infrared detector, are reported. This structure allows for post-fabrication tuning of the detector spectral response through voltage-induced modification of the carrier density within graphene and, therefore, its plasmonic response. These changes modify the transmittance through the metasurface, which is fabricated monolithically atop the detector, allowing for spectral control of light reaching the detector. Importantly, this structure provides a fabrication-controlled alignment of the metasurface filter to the detector pixel and is entirely solid-state. Using single pixel devices, relative changes in the spectral response exceeding 8% have been realized. These proof-of-concept devices present a path toward solid-state hyperspectral imaging with independent pixel-to-pixel spectral control through a voltage-actuated dynamic response.
The Lorentz-like effective medium resonance (LEMR) exhibited by the longitudinal effective permittivity of semiconductor hyperbolic metamaterials (SHMs) has been known for some time. However, direct observation of this resonance proved to be difficult. Herein, we experimentally demonstrate its existence by strongly coupling SHMs to plasmonic metasurfaces. We consider four strong coupling implementations of SHMs that exhibit different LEMR absorption profiles (both in frequency and in strength) to validate our approach.
Fink, D.R.; Lee, S.; Kodati, S.H.; Rogers, V.; Ronningen, T.J.; Winslow, M.; Grein, C.H.; Jones, A.H.; Campbell, J.C.; Klem, John F.; Krishna, S.
We present a method of determining the background doping type in semiconductors using capacitance-voltage measurements on overetched double mesa p-i-n or n-i-p structures. Unlike Hall measurements, this method is not limited by the conductivity of the substrate. By measuring the capacitance of devices with varying top and bottom mesa sizes, we were able to conclusively determine which mesa contained the p-n junction, revealing the polarity of the intrinsic layer. This method, when demonstrated on GaSb p-i-n and n-i-p structures, concluded that the material is residually doped p-type, which is well established by other sources. The method was then applied to a 10 monolayer InAs/10 monolayer AlSb superlattice, for which the doping polarity was unknown, and indicated that this material is also p-type.
Proceedings of SPIE - The International Society for Optical Engineering
Fink, D.R.; Lee, S.; Kodati, S.H.; Dahiya, V.; Ronningen, T.J.; Winslow, M.; Grein, C.H.; Jones, A.H.; Campbell, J.C.; Klem, John F.; Krishna, S.
We present a method of determining the background doping type in semiconductors using capacitance-voltage measurements on overetched double mesa p-i-n or n-i-p structures. Unlike Hall measurements, this method is not limited by the conductivity of the substrate. By measuring the capacitance of devices with varying top and bottom mesa sizes, we were able to conclusively determine which mesa contained the p-n junction, revealing the polarity of the intrinsic layer. This method, when demonstrated on GaSb p-i-n and n-i-p structures, determined that the material is residually doped p-type, which is well established by other sources. The method was then applied on a 10 monolayer InAs/10 monolayer AlSb superlattice, for which the doping polarity was unknown, and indicated that this material is also p-type.
An InGaAs/GaAsSb Type-II superlattice is explored as an absorber material for extended short-wave infrared detection. A 10.5 nm period was grown with an InGaAs/GaAsSb thickness ratio of 2 with a target In composition of 46% and target Sb composition of 62%. Cutoff wavelengths near 2.8 μm were achieved with responsivity beyond 3 μm. Demonstrated dark current densities were as low as 1.4 mA/cm2 at 295K and 13 μA/cm2 at 235K at -1V bias. A significant barrier to hole extraction was identified in the detector design that severely limited the external quantum efficiency (EQE) of the detectors. A redesign of the detector that removes that barrier could make InGaAs/GaAsSb very competitive with current commercial HgCdTe and extended InGaAs technology.
Characterization of vertical transport in semiconductor heterostructures is extremely difficult and often impractical. Measurements that are relatively straight forward in lateral transport using Hall methods, such as quantifying carrier density or mobility, have no analog in conventional vertical devices. Doppler charge velocimetry may provide an alternative approach to obtaining transport information. We hypothesize that we can drive vertical currents in structures like heterojunction bipolar transistors or nBn detectors, illuminate them with microwaves, and directly measure the carrier velocities through Doppler shifts imparted on the reflected microwave signal. Some challenges involve providing optical injection and working in the vertical geometry required to extract the desired information. While progress was made to this end, experiments have not yet proved successful. Implications for infrared material characterization are summarized at the end of this document.
We study semiconductor hyperbolic metamaterials (SHMs) at the quantum limit experimentally using spectroscopic ellipsometry as well as theoretically using a new microscopic theory. The theory is a combination of microscopic density matrix approach for the material response and Green’s function approach for the propagating electric field. Our approach predicts absorptivity of the full multilayer system and for the first time allows the prediction of in-plane and out-of-plane dielectric functions for every individual layer constructing the SHM as well as effective dielectric functions that can be used to describe a homogenized SHM.
Considering the power constrained scaling of silicon complementary metal-oxide-semiconductor technology, the use of high mobility III-V compound semiconductors such as In0.53Ga0.47As in conjunction with high-κ dielectrics is becoming a promising option for future n-type metal-oxide-semiconductor field-effect-transistors. Development of low dissipation field-effect tunable III-V based photonic devices integrated with high-κ dielectrics is therefore very appealing from a technological perspective. In this work, we present an experimental realization of a monolithically integrable, field-effect-tunable, III-V hybrid metasurface operating at long-wave-infrared spectral bands. Our device relies on strong light-matter coupling between epsilon-near-zero (ENZ) modes of an ultra-thin In0.53Ga0.47As layer and the dipole resonances of a complementary plasmonic metasurface. The tuning mechanism of our device is based on field-effect modulation, where we modulate the coupling between the ENZ mode and the metasurface by modifying the carrier density in the ENZ layer using an external bias voltage. Modulating the bias voltage between ±2 V, we deplete and accumulate carriers in the ENZ layer, which result in spectrally tuning the eigenfrequency of the upper polariton branch at 13 μm by 480 nm and modulating the reflectance by 15%, all with leakage current densities less than 1 μA/cm2. Our wavelength scalable approach demonstrates the possibility of designing on-chip voltage-tunable filters compatible with III-V based focal plane arrays at mid- and long-wave-infrared wavelengths.
Brener, Igal B.; Nookala, N N.; Lee, J L.; Liu, Y L.; Palaferri, D P.; Tymchenko, M T.; Boehm, G B.; Amann, MC A.; Wolf, O W.; Klem, John F.; Alu, A A.; Belkin, M B.
We report here our recent electron transport results in spatially separated two-dimensional electron and hole gases with nominally degenerate energy subbands, realized in an InAs(10 nm)/GaSb(5 nm) coupled quantum well. We observe a narrow and intense maximum (∼500 kΩ) in the four-terminal resistivity in the charge neutrality region, separating the electron-like and hole-like regimes, with a strong activated temperature dependence above T = 7 K and perfect stability against quantizing magnetic fields. We discuss several mechanisms for that unexpectedly large resistance in this zero-gap semi-metal system including the formation of an excitonic insulator state.
We show that Sb substitution for As in a MBE grown InAs/InAsSb strained layer superlattice (SLS) is accompanied by significant strain fluctuations. The SLS was observed using scanning transmission electron microscopy along the [100] zone axis where the cation and anion atomic columns are separately resolved. Strain analysis based on atomic column positions reveals asymmetrical transitions in the strain profile across the SLS interfaces. The averaged strain profile is quantitatively fitted to the segregation model, which yields a distribution of Sb in agreement with the scanning tunneling microscopy result. The subtraction of the calculated strain reveals an increase in strain fluctuations with the Sb concentration, as well as isolated regions with large strain deviations extending spatially over ∼1 nm, which suggest the presence of point defects.
We examine integration of a patterned metal nanoantenna (or metasurface) directly onto long-wave infrared detectors. These structures show significantly improved external quantum efficiency compared to their traditional counterparts. We will show simulation and experimental results.