Validation and Uncertainty Estimation of Carbon Fiber Epoxy Composite Model
Abstract not provided.
Abstract not provided.
Journal of the Electrochemical Society
Lithium-ion battery safety is prerequisite for applications from consumer electronics to grid energy storage. Cell and component-level calorimetry studies are central to safety evaluations. Qualitative empirical comparisons have been indispensable in understanding decomposition behavior. More systematic calorimetry studies along with more comprehensive measurements and reporting can lead to more quantitative mechanistic understanding. This mechanistic understanding can facilitate improved designs and predictions for scenarios that are difficult to access experimentally, such as system-level failures. Recommendations are made to improve usability of calorimetry results in mechanistic understanding. From our perspective, this path leads to a more mature science of battery safety.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of the Electrochemical Society
Heat release that leads to thermal runaway of lithium-ion batteries begins with decomposition reactions associated with lithiated graphite. We broadly review the observed phenomena related to lithiated graphite electrodes and develop a comprehensive model that predicts with a single parameter set and with reasonable accuracy measurements over the available temperature range with a range of graphite particle sizes. The model developed in this work uses a standardized total heat release and takes advantage of a revised dependence of reaction rates and the tunneling barrier on specific surface area. The reaction extent is limited by inadequate electrolyte or lithium. Calorimetry measurements show that heat release from the reaction between lithiated graphite and electrolyte accelerates above ~200°C, and the model addresses this without introducing additional chemical reactions. This method assumes that the electron-tunneling barrier through the solid electrolyte interphase (SEI) grows initially and then becomes constant at some critical magnitude, which allows the reaction to accelerate as the temperature rises by means of its activation energy. Phenomena that could result in the upper limit on the tunneling barrier are discussed. The model predictions with two candidate activation energies are evaluated through comparisons to calorimetry data, and recommendations are made for optimal parameters.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2018 Spring Technical Meeting of the Western States Section of the Combustion Institute, WSSCI 2018
This study addresses predicting the internal thermochemical state in buoyant fire plumes using largeeddy simulations (LES) with a tabular flamelet library for the underlying flame chemistry. Buoyant fire plumes are characterized by moderate turbulent mixing, soot growth and oxidation and radiation transport. Soot moments, mixture fraction and enthalpy evolve in the LES with soot source terms given by the non-adiabatic flamelet library. Participating media radiation transport is predicted using the discrete ordinates method with source terms also from the flamelet library, and the LES subgrid-scale modeling is based on a one-equation kinetic-energy sub-filter model. This library is generated with flamelet states that include unsteady heat loss through extinction nominally representing radiative quenching. We describe the performance of this model both in the context of a laminar coflow configuration where extensive measurements are available and in buoyant turbulent fire plumes where measurements are more global.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Journal of Multiphase Flow
ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent air jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial velocities are obtained as functions of axial position. The time and length scales of the jet are varied through control of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter (7 mm), particle diameters (60 and 90 µm), and Reynolds numbers (10, 000–30, 000) are analyzed to obtain the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are compared to experimental measurements. It is shown that the particle tracking method is capable of yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In this paper, three particle-eddy interaction models (Type-I, -C, and -IC) are presented to examine the details of particle dispersion and particle-eddy interaction in jet flow.
Abstract not provided.
Abstract not provided.
2017 Fall Technical Meeting of the Western States Section of the Combustion Institute, WSSCI 2017
A 1-m diameter methane fire plume has been studied using a large eddy simulation (LES) methodology. Eddy dissipation concept (EDC) and steady flamelet combustion models were used to describe interactions between buoyancy-induced turbulence and gas-phase combustion. Detailed comparisons with experimental data showed that the simulation is sensitive to the combustion model and mesh resolution. In particular, any excessive mixing results in a wider and more diffusive plume. As mesh resolution increases, the current simulations demonstrate a tendency toward excessive mixing.
10th U.S. National Combustion Meeting
As deployment of large-scale Li-Ion battery modules is contemplated, there is a need to understand the propensity for thermal runaway in individual cells and the large-scale thermal failure at the pack level. Sources of thermal energy can lead to runaway including short circuits (internal or external), exothermic processes from overcharge of imbalanced cells, the external environment, and other factors. With battery modules consisting of hundreds or even thousands of cells, it will be necessary to design tolerance to local heat release, regardless of the source. This work presents a chemistry-independent framework for analyzing and modeling thermal runaway that will be demonstrated by applying it to thermal runaway (ignition) and cascading failure (propagation).
Proceedings of the Combustion Institute
Turbulent fluctuations of the scalar dissipation rate have a major impact on extinction in non-premixed combustion. Recently, an unsteady extinction criterion has been developed (Hewson, 2013) that predicts extinction dependent on the duration and the magnitude of dissipation rate fluctuations exceeding a critical quenching value; this quantity is referred to as the dissipation impulse. The magnitude of the dissipation impulse corresponding to unsteady extinction is related to the difficulty with which a flamelet is exintguished, based on the steady-state S-curve. In this paper we evaluate this new extinction criterion for more realistic dissipation rates by evolving a stochastic Ornstein-Uhlenbeck process for the dissipation rate. A comparison between unsteady flamelet evolution using this dissipation rate and the extinction criterion exhibit good agreement. The rate of predicted extinction is examined over a range of Damköhler and Reynolds numbers and over a range of the extinction difficulty. The results suggest that the rate of extinction is proportional to the average dissipation rate and the area under the dissipation rate probability density function exceeding the steady-state quenching value. It is also inversely related to the actual probability that this steady-state quenching dissipation rate is observed and the difficulty of extinction associated with the distance between the upper and middle branches of the S-curve.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.