Publications

Results 76–100 of 124
Skip to search filters

Very-large-scale coherent structures in the wall pressure field beneath a supersonic turbulent boundary layer

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O.

Previous wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer, which essentially are flat at low frequency and do not exhibit the theorized {psi}{sup 2} dependence. The flat portion of the spectrum extends over two orders of magnitude and represents structures reaching at least 100 {delta} in scale, raising questions about their physical origin. The spatial coherence required over these long lengths may arise from very-large-scale structures that have been detected in turbulent boundary layers due to groupings of hairpin vortices. To address this hypothesis, data have been acquired from a dense spanwise array of fluctuating wall pressure sensors, then invoking Taylor's Hypothesis and low-pass filtering the data allows the temporal signals to be converted into a spatial map of the wall pressure field. This reveals streaks of instantaneously correlated pressure fluctuations elongated in the streamwise direction and exhibiting spanwise alternation of positive and negative events that meander somewhat in tandem. As the low-pass filter cutoff is lowered, the fluctuating pressure magnitude of the coherent structures diminishes while their length increases.

More Details

Pressure power spectra beneath a supersonic turbulent boundary layer

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O.

Wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer to frequencies reaching 400 kHz by combining signals from piezoresistive silicon pressure transducers effective at low- and mid-range frequencies and piezoelectric quartz sensors to detect high frequency events. Data were corrected for spatial attenuation at high frequencies and for wind-tunnel noise and vibration at low frequencies. The resulting power spectra revealed the {omega}{sup -1} dependence for fluctuations within the logarithmic region of the boundary layer, but are essentially flat at low frequency and do not exhibit the theorized {omega}{sup 2} dependence. Variations in the Reynolds number or streamwise measurement location collapse to a single curve for each Mach number when normalized by outer flow variables. Normalization by inner flow variables is successful for the {omega}{sup -1} region but less so for lower frequencies. A comparison of the pressure fluctuation intensities with fifty years of historical data shows their reported magnitude chiefly is a function of the frequency response of the sensors. The present corrected data yield results in excess of the bulk of the historical data, but uncorrected data are consistent with lower magnitudes. These trends suggest that much of the historical compressible database may be biased low, leading to the failure of several semi-empirical predictive models to accurately represent the power spectra acquired during the present experiments.

More Details

Meander of a fin trailing vortex measured using particle image velocimetry

47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.

The low-frequency meander of a trailing vortex shed from a tapered fin installed on a wind tunnel wall has been studied using stereoscopic particle image velocimetry in the near-wake at Mach 0.8. Distributions of the instantaneous vortex position reveal that the meander amplitude increases with downstream distance and decreases with vortex strength, indicating meander is induced external to the vortex. Trends with downstream distance suggest meander begins on the fin surface, prior to vortex shedding. Mean vortex properties are unaltered when considered in the meandering reference frame, apparently because turbulent fluctuations in the vortex shape and strength dominate positional variations. Conversely, a large peak of artificial turbulent kinetic energy is found centered in the vortex core, which almost entirely disappears when corrected for meander, though some turbulence remains near the core radius. Turbulence originating at the wind tunnel wall was shown to contribute to vortex meander by energizing the incoming boundary layer using low-profile vortex generators and observing a substantial increase in the meander amplitude while greater turbulent kinetic energy penetrates the vortex core. An explanatory mechanism has been hypothesized, in which the vortex initially forms at the apex of the swept leading edge of the fin where it is exposed to turbulent fluctuations within the wind tunnel wall boundary layer, introducing an instability into the incipient vortex core.

More Details
Results 76–100 of 124
Results 76–100 of 124