Publications

Results 26–50 of 131
Skip to search filters

Improved Wave Energy Production Forecasts for Smart Grid Integration

Dallman, Ann R.; Khalil, Mohammad K.; Raghukumar, Kaus R.; Kasper, Jeremy L.; Jones, Craig J.; Roberts, Jesse D.

Integration of renewable power sources into electrical grids remains an active research and development area, particularly for less developed renewable energy technologies, such as wave energy converters (WECs). High spatio-temporal resolution and accurate wave forecasts at a potential WEC (or WEC array) lease area are needed to improve WEC power prediction and to facilitate grid integration, particularly for microgrid locations. The availability of high quality measurement data from recently developed low-cost buoys allows for operational assimilation of wave data into forecast models at remote locations where real-time data have previously been unavailable. This work includes the development and assessment of a wave modeling framework with real-time data assimilation capabilities for WEC power prediction. Spoondrift wave measurement buoys were deployed off the coast of Yakutat, Alaska, a microgrid site with high wave energy resource potential. A wave modeling framework with data assimilation was developed and assessed, which was most effective when the incoming forecasted boundary conditions did not represent the observations well. For that case, assimilation of the wave height data using the ensemble Kalman filter resulted in a reduction of wave height forecast normalized root mean square error from 27% to an average of 16% over a 12-hour period. This results in reduction of wave power forecast error from 73% to 43%. In summary, the use of the low-cost wave buoy data assimilated into the wave modeling framework improved the forecast skill and will provide a useful development tool for the integration of WECs into electrical grids.

More Details

Modeling underwater noise propagation from marine hydrokinetic power devices through a time-domain, velocity-pressure solution

Journal of the Acoustical Society of America

Hafla, Erin H.; Johnson, Erick J.; Johnson, C.N.; Preston, Leiph A.; Aldridge, David A.; Roberts, Jesse D.

Marine hydrokinetic (MHK) devices generate electricity from the motion of tidal and ocean currents, as well as ocean waves, to provide an additional source of renewable energy available to the United States. These devices are a source of anthropogenic noise in the marine ecosystem and must meet regulatory guidelines that mandate a maximum amount of noise that may be generated. In the absence of measured levels from in situ deployments, a model for predicting the propagation of sound from an array of MHK sources in a real environment is essential. A set of coupled, linearized velocity-pressure equations in the time-domain are derived and presented in this paper, which are an alternative solution to the Helmholtz and wave equation methods traditionally employed. Discretizing these equations on a three-dimensional (3D), finite-difference grid ultimately permits a finite number of complex sources and spatially varying sound speeds, bathymetry, and bed composition. The solution to this system of equations has been parallelized in an acoustic-wave propagation package developed at Sandia National Labs, called Paracousti. This work presents the broadband sound pressure levels from a single source in two-dimensional (2D) ideal and Pekeris wave-guides and in a 3D domain with a sloping boundary. Furthermore, the paper concludes with demonstration of Paracousti for an array of MHK sources in a simple wave-guide.

More Details

Offshore wind sediment stability evaluation framework

Proceedings of the Annual Offshore Technology Conference

Jones, Craig; McWilliams, Sam; Engelmann, Georg; Thurlow, Aimee; Roberts, Jesse D.

Developing sound methods to evaluate risk of seabed mobility and alteration of sediment transport patterns in the near-shore coastal regions due to the presence of Offshore Wind (OW) infrastructure is critical to project planning, permitting, and operations. OW systems may include seafloor foundations, cabling, floating structures with gravity anchors, or a combination of several of these systems. Installation of these structures may affect the integrity of the sediment bed, thus affecting seabed dynamics and stability. It is therefore necessary to evaluate hydrodynamics and seabed dynamics and the effects of OW subsea foundations and cables on sediment transport. A methodology is presented here to map a site's sediment (seabed) stability and can in turn support the evaluation of the potential for these processes to affect OW deployments and the local ecology. Sediment stability risk maps are developed for a site offshore of Central Oregon. A combination of geophysical site characterization, metocean analysis, and numerical modeling is used to develop a quantitative assessment of local scour and overall seabed stability. The findings generally show the presence of structures reduces the sediment transport in the lee area of the array by altering current and wave fields. The results illustrate how the overall regional patterns of currents and waves influence local scour near pilings and cables.

More Details
Results 26–50 of 131
Results 26–50 of 131