Publications

Results 201–225 of 263
Skip to search filters

Carotenoid distribution in living cells of haematococcus pluvialis (chlorophyceae)

PLoS ONE

Collins, Aaron M.; Jones, Howland D.; Han, Danxiang; Hu, Qiang; Beechem, Thomas E.; Timlin, Jerilyn A.

Haematococcus pluvialis is a freshwater unicellular green microalga belonging to the class Chlorophyceae and is of commercial interest for its ability to accumulate massive amounts of the red ketocarotenoid astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione). Using confocal Raman microscopy and multivariate analysis, we demonstrate the ability to spectrally resolve resonance-enhanced Raman signatures associated with astaxanthin and β-carotene along with chlorophyll fluorescence. By mathematically isolating these spectral signatures, in turn, it is possible to locate these species independent of each other in living cells of H. pluvialis in various stages of the life cycle. Chlorophyll emission was found only in the chloroplast whereas astaxanthin was identified within globular and punctate regions of the cytoplasmic space. Moreover, we found evidence for β-carotene to be co-located with both the chloroplast and astaxanthin in the cytosol. These observations imply that β-carotene is a precursor for astaxanthin and the synthesis of astaxanthin occurs outside the chloroplast. Our work demonstrates the broad utility of confocal Raman microscopy to resolve spectral signatures of highly similar chromophores in living cells. © 2011 Collins et al.

More Details

Advanced optical imaging reveals the dependence of particle geometry on interactions between CdSe quantum dots and immune cells

Small

Aaron, Jesse S.; Greene, Adrienne C.; Kotula, Paul G.; Bachand, George B.; Timlin, Jerilyn A.

The biocompatibility and possible toxicological consequences of engineered nanomaterials, including quantum dots (QDs) due to their unique suitability for biomedical applications, remain intense areas of interest. We utilized advanced imaging approaches to characterize the interactions of CdSe QDs of various sizes and shapes with live immune cells. Particle diffusion and partitioning within the plasma membrane, cellular uptake kinetics, and sorting of particles into lysosomes were all independantly characterized. Using high-speed total internal reflectance fluorescence (TIRF) microscopy, we show that QDs with an average aspect ratio of 2.0 (i.e., rod-shaped) diffuse nearly an order of magnitude slower in the plasma membrane than more spherical particles with aspect ratios of 1.2 and 1.6, respectively. Moreover, more rod-shaped QDs were shown to be internalized into the cell 2-3 fold more slowly. Hyperspectral confocal fluorescence microscopy demonstrates that QDs tend to partition within the cell membrane into regions containing a single particle type. Furthermore, data examining QD sorting mechanisms indicate that endocytosis and lysosomal sorting increases with particle size. Together, these observations suggest that both size and aspect ratio of a nanoparticle are important characteristics that significantly impact interactions with the plasma membrane, uptake into the cell, and localization within intracellular vesicles. Thus, rather than simply characterizing nanoparticle uptake into cells, we show that utilization of advanced imaging approaches permits a more nuanced and complete examination of the multiple aspects of cell-nanoparticle interactions that can ultimately aid understanding possible mechanisms of toxicity, resulting in safer nanomaterial designs. Using hyperspectral confocal fluorescence (HCF) microscopy, it is shown that quantum dots of various sizes and shapes partition themselves into distinct regions within the cell membrane of RBL-2H3 rat mast cells. HCF microscopy allows for deconvolving the signal from multiple, overlapping fluorophores in the sample in order to reveal precise concentrations and distributions of nanoparticles in the cell. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

More Details

Super-resolution microscopy reveals protein spatial reorganization in early innate immune responses

Carson, Bryan C.; Timlin, Jerilyn A.

Over the past decade optical approaches were introduced that effectively break the diffraction barrier. Of particular note were introductions of Stimulated Emission/Depletion (STED) microscopy, Photo-Activated Localization Microscopy (PALM), and the closely related Stochastic Optical Reconstruction Microscopy (STORM). STORM represents an attractive method for researchers, as it does not require highly specialized optical setups, can be implemented using commercially available dyes, and is more easily amenable to multicolor imaging. We implemented a simultaneous dual-color, direct-STORM imaging system through the use of an objective-based TIRF microscope and filter-based image splitter. This system allows for excitation and detection of two fluorophors simultaneously, via projection of each fluorophor's signal onto separate regions of a detector. We imaged the sub-resolution organization of the TLR4 receptor, a key mediator of innate immune response, after challenge with lipopolysaccharide (LPS), a bacteria-specific antigen. While distinct forms of LPS have evolved among various bacteria, only some LPS variations (such as that derived from E. coli) typically result in significant cellular immune response. Others (such as from the plague bacteria Y. pestis) do not, despite affinity to TLR4. We will show that challenge with LPS antigens produces a statistically significant increase in TLR4 receptor clusters on the cell membrane, presumably due to recruitment of receptors to lipid rafts. These changes, however, are only detectable below the diffraction limit and are not evident using conventional imaging methods. Furthermore, we will compare the spatiotemporal behavior of TLR4 receptors in response to different LPS chemotypes in order to elucidate possible routes by which pathogens such as Y. pestis are able to circumvent the innate immune system. Finally, we will exploit the dual-color STORM capabilities to simultaneously image LPS and TLR4 receptors in the cellular membrane at resolutions at or below 40nm.

More Details

Hyperspectral imaging of microalgae using two-photon excitation

Jones, Howland D.; Sinclair, Michael B.; Luk, Ting S.; Collins, Aaron M.; Garcia, Omar F.; Melgaard, David K.; Timlin, Jerilyn A.; Reichardt, Thomas A.

A considerable amount research is being conducted on microalgae, since microalgae are becoming a promising source of renewable energy. Most of this research is centered on lipid production in microalgae because microalgae produce triacylglycerol which is ideal for biodiesel fuels. Although we are interested in research to increase lipid production in algae, we are also interested in research to sustain healthy algal cultures in large scale biomass production farms or facilities. The early detection of fluctuations in algal health, productivity, and invasive predators must be developed to ensure that algae are an efficient and cost-effective source of biofuel. Therefore we are developing technologies to monitor the health of algae using spectroscopic measurements in the field. To do this, we have proposed to spectroscopically monitor large algal cultivations using LIDAR (Light Detection And Ranging) remote sensing technology. Before we can deploy this type of technology, we must first characterize the spectral bio-signatures that are related to algal health. Recently, we have adapted our confocal hyperspectral imaging microscope at Sandia to have two-photon excitation capabilities using a chameleon tunable laser. We are using this microscope to understand the spectroscopic signatures necessary to characterize microalgae at the cellular level prior to using these signatures to classify the health of bulk samples, with the eventual goal of using of LIDAR to monitor large scale ponds and raceways. By imaging algal cultures using a tunable laser to excite at several different wavelengths we will be able to select the optimal excitation/emission wavelengths needed to characterize algal cultures. To analyze the hyperspectral images generated from this two-photon microscope, we are using Multivariate Curve Resolution (MCR) algorithms to extract the spectral signatures and their associated relative intensities from the data. For this presentation, I will show our two-photon hyperspectral imaging results on a variety of microalgae species and show how these results can be used to characterize algal ponds and raceways.

More Details
Results 201–225 of 263
Results 201–225 of 263