Publications

Results 1–25 of 93
Skip to search filters

Predicting the mechanical response of oligocrystals with deep learning

Computational Materials Science

Frankel, A.L.; Jones, R.E.; Alleman, Coleman A.; Templeton, Jeremy A.

In this work we employ data-driven homogenization approaches to predict the particular mechanical evolution of polycrystalline aggregates with tens of individual crystals. In these oligocrystals the differences in stress response due to microstructural variation is pronounced. Shell-like structures produced by metal-based additive manufacturing and the like make the prediction of the behavior of oligocrystals technologically relevant. The predictions of traditional homogenization theories based on grain volumes are not sensitive to variations in local grain neighborhoods. Direct simulation of the local response with crystal plasticity finite element methods is more detailed, but the computations are expensive. To represent the stress-strain response of a polycrystalline sample given its initial grain texture and morphology we have designed a novel neural network that incorporates a convolution component to observe and reduce the information in the crystal texture field and a recursive component to represent the causal nature of the history information. This model exhibits accuracy on par with crystal plasticity simulations at minimal computational cost per prediction.

More Details

Uncertainty Quantification of Microstructural Material Variability Effects

Jones, Reese E.; Boyce, Brad B.; Frankel, Ari L.; Heckman, Nathan H.; Khalil, Mohammad K.; Ostien, Jakob O.; Rizzi, Francesco N.; Tachida, Kousuke K.; Teichert, Gregory H.; Templeton, Jeremy A.

This project has developed models of variability of performance to enable robust design and certification. Material variability originating from microstructure has significant effects on component behavior and creates uncertainty in material response. The outcomes of this project are uncertainty quantification (UQ) enabled analysis of material variability effects on performance and methods to evaluate the consequences of microstructural variability on material response in general. Material variability originating from heterogeneous microstructural features, such as grain and pore morphologies, has significant effects on component behavior and creates uncertainty around performance. Current engineering material models typically do not incorporate microstructural variability explicitly, rather functional forms are chosen based on intuition and parameters are selected to reflect mean behavior. Conversely, mesoscale models that capture the microstructural physics, and inherent variability, are impractical to utilize at the engineering scale. Therefore, current efforts ignore physical characteristics of systems that may be the predominant factors for quantifying system reliability. To address this gap we have developed explicit connections between models of microstructural variability and component/system performance. Our focus on variability of mechanical response due to grain and pore distributions enabled us to fully probe these influences on performance and develop a methodology to propagate input variability to output performance. This project is at the forefront of data-science and material modeling. We adapted and innovated from progressive techniques in machine learning and uncertainty quantification to develop a new, physically-based methodology to address the core issues of the Engineering Materials Reliability (EMR) research challenge in modeling constitutive response of materials with significant inherent variability and length-scales.

More Details

Bayesian modeling of inconsistent plastic response due to material variability

Computer Methods in Applied Mechanics and Engineering

Rizzi, F.; Khalil, Mohammad K.; Jones, Reese E.; Templeton, Jeremy A.; Ostien, Jakob O.; Boyce, B.L.

The advent of fabrication techniques such as additive manufacturing has focused attention on the considerable variability of material response due to defects and other microstructural aspects. This variability motivates the development of an enhanced design methodology that incorporates inherent material variability to provide robust predictions of performance. In this work, we develop plasticity models capable of representing the distribution of mechanical responses observed in experiments using traditional plasticity models of the mean response and recently developed uncertainty quantification (UQ) techniques. To account for material response variability through variations in physical parameters, we adapt a recent Bayesian embedded modeling error calibration technique. We use Bayesian model selection to determine the most plausible of a variety of plasticity models and the optimal embedding of parameter variability. To expedite model selection, we develop an adaptive importance-sampling-based numerical integration scheme to compute the Bayesian model evidence. We demonstrate that the new framework provides predictive realizations that are superior to more traditional ones, and how these UQ techniques can be used in model selection and assessing the quality of calibrated physical parameters.

More Details

Optimal Compressed Sensing and Reconstruction of Unstructured Mesh Datasets

Data Science and Engineering

Salloum, Maher S.; Fabian, Nathan D.; Hensinger, David M.; Lee, Jina L.; Allendorf, Elizabeth M.; Bhagatwala, Ankit; Blaylock, Myra L.; Chen, Jacqueline H.; Templeton, Jeremy A.; Tezaur, Irina

Exascale computing promises quantities of data too large to efficiently store and transfer across networks in order to be able to analyze and visualize the results. We investigate compressed sensing (CS) as an in situ method to reduce the size of the data as it is being generated during a large-scale simulation. CS works by sampling the data on the computational cluster within an alternative function space such as wavelet bases and then reconstructing back to the original space on visualization platforms. While much work has gone into exploring CS on structured datasets, such as image data, we investigate its usefulness for point clouds such as unstructured mesh datasets often found in finite element simulations. We sample using a technique that exhibits low coherence with tree wavelets found to be suitable for point clouds. We reconstruct using the stagewise orthogonal matching pursuit algorithm that we improved to facilitate automated use in batch jobs. We analyze the achievable compression ratios and the quality and accuracy of reconstructed results at each compression ratio. In the considered case studies, we are able to achieve compression ratios up to two orders of magnitude with reasonable reconstruction accuracy and minimal visual deterioration in the data. Our results suggest that, compared to other compression techniques, CS is attractive in cases where the compression overhead has to be minimized and where the reconstruction cost is not a significant concern.

More Details

Machine learning models of plastic flow based on representation theory

CMES - Computer Modeling in Engineering and Sciences

Jones, R.E.; Templeton, Jeremy A.; Sanders, Clay M.; Ostien, Jakob O.

We use machine learning (ML) to infer stress and plastic flow rules using data from representative polycrystalline simulations. In particular, we use so-called deep (multilayer) neural networks (NN) to represent the two response functions. The ML process does not choose appropriate inputs or outputs, rather it is trained on selected inputs and output. Likewise, its discrimination of features is crucially connected to the chosen input-output map. Hence, we draw upon classical constitutive modeling to select inputs and enforce well-accepted symmetries and other properties. In the context of the results of numerous simulations, we discuss the design, stability and accuracy of constitutive NNs trained on typical experimental data. With these developments, we enable rapid model building in real-time with experiments, and guide data collection and feature discovery.

More Details

Uncertainty quantification in LES of channel flow

International Journal for Numerical Methods in Fluids

Safta, Cosmin S.; Blaylock, Myra L.; Templeton, Jeremy A.; Domino, Stefan P.; Sargsyan, Khachik S.; Najm, H.N.

In this paper, we present a Bayesian framework for estimating joint densities for large eddy simulation (LES) sub-grid scale model parameters based on canonical forced isotropic turbulence direct numerical simulation (DNS) data. The framework accounts for noise in the independent variables, and we present alternative formulations for accounting for discrepancies between model and data. To generate probability densities for flow characteristics, posterior densities for sub-grid scale model parameters are propagated forward through LES of channel flow and compared with DNS data. Synthesis of the calibration and prediction results demonstrates that model parameters have an explicit filter width dependence and are highly correlated. Discrepancies between DNS and calibrated LES results point to additional model form inadequacies that need to be accounted for. Copyright © 2016 John Wiley & Sons, Ltd.

More Details

Reynolds averaged turbulence modelling using deep neural networks with embedded invariance

Journal of Fluid Mechanics

Ling, Julia L.; Kurzawski, Andrew; Templeton, Jeremy A.

There exists significant demand for improved Reynolds-Averaged Navier-Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. The Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.

More Details

A Mesh-Free Method to Predictively Simulate Solid-to-Liquid Phase Transitions in Abnormal Thermal Environments

Templeton, Jeremy A.; Erickson, Lindsay C.; Morris Wright, Karla V.

Particle methods in computational physics are useful for modeling the motion of fluids and solids subject to large deformations. Under these conditions, mesh-based approaches often fail due to decreasing element quality leading to inaccuracy and instability. The developed software package called Moab investigates and prototypes next-generation particle methods, focusing on rigorous error analysis and active error minimization strategies during the computation. The present work discusses examples calculations representative of real engineering problems with quantified and maximized accuracy while demonstrating the potential for meeting engineering performance re- quirements.

More Details
Results 1–25 of 93
Results 1–25 of 93