Continuum Modeling and Flow Visualization of Blown Foams
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Review Letters.
The evolution of granular shear flow is investigated as a function of height in a split-bottom Couette cell. Using particle tracking, magnetic-resonance imaging, and large-scale simulations, we find a transition in the nature of the shear as a characteristic height H* is exceeded. Below H* there is a central stationary core; above H* we observe the onset of additional axial shear associated with torsional failure. Radial and axial shear profiles are qualitatively different: the radial extent is wide and increases with height, while the axial width remains narrow and fixed.
Slow, dense granular flows often exhibit thin, localized regions of particle motion, called shear bands, separating largely solid-like regions. Recent experiments using a split-bottom Couette cell found that the width of the shear zone grew as the pack height increased and the azimuthal velocities when rescaled fall on a universal curve regardless of the particle properties. Here we present large-scale Discrete Element simulations of a similar system for packs of varying height up to 180,000 monodisperse spheres. The onset and evolution of granular shear flow is investigated as a function of height. We find a transition in the nature of the shear as a characteristic height is exceeded. Below this height there is a central quasi-solid core; above this height we observe the onset of additional axial shear associated with a torsional failure mode of the inner core. Radial and axial shear profiles are qualitatively different: the radial extent is wide and increases with height while the axial width remains narrow and fixed.
Abstract not provided.
Abstract not provided.
Large-scale three dimensional Discrete Element simulations of granular flow in a modified split-bottom Couette cell for packs of up to 180,000 mono-disperse spheres are presented and compared with experiments. We find that the velocity profiles collapse onto a universal curve not only at the surface but also in the bulk of the pack until slip between layers becomes significant. In agreement with experiment, we find similar relations between the cell geometry and parameters involved in rescaling the velocities at the surface and in the bulk. Likewise, a change in the shape of the shear zone is observed as predicted for tall packs once the center of the shear zone is correctly defined; although the transition does not appear to be first order. Finally, the effect of cohesion is considered as a means to test the theoretical predictions.