Evaluation of Asynchronous Multitask Programming Models using Mini-Applications
Abstract not provided.
Abstract not provided.
This brief report explains the method used for parameter calibration and model validation in SST/Macro and the set of tools and workflow developed for this purpose.
Proceedings - IEEE 28th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2014
Coordination languages are an established programming model for distributed computing, but have been largely eclipsed by message passing (MPI) in scientific computing. In contrast to MPI, parallel workers never directly communicate, instead 'coordinating' indirectly via key-value store puts and gets. Coordination often focuses on program expressiveness, making parallel codes easier to implement. However, coordination also benefits resilience since the key-value store acts as a virtualization layer. Coordination languages (notably Linda) were therefore leading candidates for fault-tolerance in the early '90s. We present the FOX tuple space framework, an extension of Linda ideas focused primarily on transitioning MPI codes to coordination programming. We demonstrate the notion of 'MPI Perturbation Theory,' showing how MPI codes can be naturally generalized to the tuple-space framework. We also consider details of high-performance interconnects, showing how intelligent use of RDMA hardware allows virtualization with minimal added latency. The framework is shown to be resilient to degradation of individual nodes, automatically rebalancing for minimal performance loss. Future fault-tolerant extensions are discussed.
Abstract not provided.
Proceedings of the International Conference on Dependable Systems and Networks
Extreme-scale computing will bring significant changes to high performance computing system architectures. In particular, the increased number of system components is creating a need for software to demonstrate 'pervasive parallelism' and resiliency. Asynchronous, many-task programming models show promise in addressing both the scalability and resiliency challenges, however, they introduce an enormously challenging distributed, resilient consistency problem. In this work, we explore the viability of resilient collective communication in task scheduling and work stealing and, through simulation with SST/macro, the performance of these collectives on speculative extreme-scale architectures.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Parallel and Distributed Computing
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.