Overview of the Structural Simulation Toolkit (SST)
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings - 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGRID 2017
The power and procurement cost of bandwidth in system-wide networks has forced a steady drop in the byte/flop ratio. This trend of computation becoming faster relative to the network is expected to hold. In this paper, we explore how cost-oriented task placement enables reducing the cost of system-wide networks by enabling high performance even on tapered topologies where more bandwidth is provisioned at lower levels. We describe APHiD, an efficient hierarchical placement algorithm that uses new techniques to improve the quality of heuristic solutions and reduces the demand on high-level, expensive bandwidth in hierarchical topologies. We apply APHiD to a tapered fat-Tree, demonstrating that APHiD maintains application scalability even for severely tapered network configurations. Using simulation, we show that for tapered networks APHiD improves performance by more than 50% over random placement and even 15% in some cases over costlier, state-of-The-Art placement algorithms.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of ESPM2 2016: 2nd International Workshop on Extreme Scale Programming Models and Middleware - Held in conjunction with SC 2016: The International Conference for High Performance Computing, Networking, Storage and Analysis
Task-based execution models have received considerable attention in recent years to meet the performance challenges facing high-performance computing (HPC). In this paper we introduce MetaPASS-Metaprogramming-enabled Para-llelism from Apparently Sequential Semantics-a proof-of-concept, non-intrusive header library that enables implicit task-based parallelism in a sequential C++ code. MetaPASS is a data-driven model, relying on dependency analysis of variable read-/write accesses to derive a directed acyclic graph (DAG) of the computation to be performed. MetaPASS enables embedding of runtime dependency analysis directly in C++ applications using only template metaprogramming. Rather than requiring verbose task-based code or source-to-source compilers, a native C++ code can be made task-based with minimal modifications. We present an overview of the programming model enabled by MetaPASS and the C++ runtime API required to support it. Details are provided regarding how standard template metaprogramming is used to capture task dependencies. We finally discuss how the programming model can be deployed in both an MPI+X and in a standalone distributed memory context.
Proceedings of COM-HPC 2016: 1st Workshop on Optimization of Communication in HPC Runtime Systems - Held in conjunction with SC 2016: The International Conference for High Performance Computing, Networking, Storage and Analysis
We introduce a topology-aware performance optimization and modeling workflow for AMR simulation that includes two new modeling tools, ProgrAMR and Mota Mapper, which interface with the BoxLib AMR framework and the SSTmacro network simulator. ProgrAMR allows us to generate and model the execution of task dependency graphs from high-level specifications of AMR-based applications, which we demonstrate by analyzing two example AMR-based multigrid solvers with varying degrees of asynchrony. Mota Mapper generates multiobjective, network topology-aware box mappings, which we apply to optimize the data layout for the example multigrid solvers. While the sensitivity of these solvers to layout and execution strategy appears to be modest for balanced scenarios, the impact of better mapping algorithms can be significant when performance is highly constrained by network hop latency. Furthermore, we show that network latency in the multigrid bottom solve is the main contributing factor preventing good scaling on exascale-class machines.
Abstract not provided.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
We investigate possible options of creating a Dragonfly topology capable of accommodating a specified number of end-points. We first observe that any Dragonfly topology can be described with two main parameters, imbalance and density, dictating the distribution of routers in groups, and the inter-group connectivity, respectively. We then introduce an algorithm that generates a dragonfly topology by taking the desired number of end-points and these two parameters as input. We calculate a variety of metrics on the generated topologies resulting from a large set of parameter combinations. Based on these metrics, we isolate the subset of topologies that present the best economical and performance trade-off. We conclude by summarizing guidelines for Dragonfly topology design and dimensioning.
Abstract not provided.
Proceedings of the AISTECS' 17 Workshop
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Conference for High Performance Computing, Networking, Storage and Analysis, SC
The Dragonfly topology provides low-diameter connectivity for high-performance computing with all-to-all global links at the inter-group level. Our traffic matrix characterization of various scientific applications shows consistent mismatch between the imbalanced group-to-group traffic and the uniform global bandwidth allocation of Dragonfly. Though adaptive routing has been proposed to utilize bandwidth of non-minimal paths, increased hops and cross-group interference lower efficiency. This work presents a photonic architecture, Flexfly, which 'trades' global links among groups using low-radix Silicon photonic switches. With transparent optical switching, Flexfly reconfigures the inter-group topology based on traffic pattern, stealing additional direct bandwidth for communication-intensive group pairs. Simulations with applications such as GTC, Nekbone and LULESH show up to 1.8× speedup over Dragonfly paired with UGAL routing, along with halved hop count and latency for cross-group messages. We built a 32-node Flexfly prototype using a Silicon photonic switch connecting four groups and demonstrated 820 ns interconnect reconfiguration time.
Abstract not provided.
PARMA (Distributed Asynchronous Resilient Models and ApH asynchronous many-task (AMT) rmogramming models and hardware idiosyncrasies, 2) improve application programmer interface (API) plication Ico-desiga activities into meaningful requirements for characterization and definition, accelerating the development of pARMAI APT is a rranslation layer runtime systems Am' 11 between an application-facing . The application-facing user-level iting the generic language constructs of C++ and adding parallel programs. Though the implementation of the provide the front end semantics, it is nonetheless fully embedded in the C++ language and leverages a widely supported front end fiack end in C++, inher- that facilitate expressing distributed asynchronous uses C++ constructs unfamiliar to many programmers to subset of C++14 functionality (gcc >= 4.9, clang >= 3.5, icc > = 16). The rranslation layer leverages C++ to map the user's code onto the fiack encI runtime APT. The fiack end APT is a set of abstract classes and function signatures that iuntime systenr developers must implement in accordance with the specification require- ments in order to interface with application code written to the must link to a iuntime systenr that implements the abstract mentations will be external, drawing upon existing provided in the pARMAI code distribution. IDARMAI fiack end templatO front end. Executable 1DARMA applications runtime APT. It is intended that these imple- technologies. However, a reference implementation will be The front end rranslation layer, and iback end APT are detailed herein. We also include a list of application requirements driving the specification (along with a list of the applications contributing to the requirements to date), a brief history of changes between previous versions of the specification, and summary of the planned changes in up- coming versions of the specification. Appendices walk the user through a more detailed set of examples of applications written in the PARMA front encI APII and provide additional technical details for those the interested reader.
Abstract not provided.
Abstract not provided.
ACM Transactions on Modeling and Performance Evaluation of Computing Systems
Simulation is a widely adopted method to analyze and predict the performance of large-scale parallel applications. Validating the hardware model is highly important for complex simulations with a large number of parameters. Common practice involves calculating the percent error between the projected and the real execution time of a benchmark program. However, in a high-dimensional parameter space, this coarse-grained approach often suffers from parameter insensitivity, which may not be known a priori. Moreover, the traditional approach cannot be applied to the validation of software models, such as application skeletons used in online simulations. In this work, we present a methodology and a toolset for validating both hardware and software models by quantitatively comparing fine-grained statistical characteristics obtained from execution traces. Although statistical information has been used in tasks like performance optimization, this is the first attempt to apply it to simulation validation. Lastly, our experimental results show that the proposed evaluation approach offers significant improvement in fidelity when compared to evaluation using total execution time, and the proposed metrics serve as reliable criteria that progress toward automating the simulation tuning process.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Major exascale computing reports indicate a number of software challenges to meet the dramatic change of system architectures in near future. While several-orders-of-magnitude increase in parallelism is the most commonly cited of those, hurdles also include performance heterogeneity of compute nodes across the system, increased imbalance between computational capacity and I/O capabilities, frequent system interrupts, and complex hardware architectures. Asynchronous task-parallel programming models show a great promise in addressing these issues, but are not yet fully understood nor developed su ciently for computational science and engineering application codes. We address these knowledge gaps through quantitative and qualitative exploration of leading candidate solutions in the context of engineering applications at Sandia. In this poster, we evaluate MiniAero code ported to three leading candidate programming models (Charm++, Legion and UINTAH) to examine the feasibility of these models that permits insertion of new programming model elements into an existing code base.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report provides in-depth information and analysis to help create a technical road map for developing next-generation programming models and runtime systems that support Advanced Simulation and Computing (ASC) work- load requirements. The focus herein is on asynchronous many-task (AMT) model and runtime systems, which are of great interest in the context of "Oriascale7 computing, as they hold the promise to address key issues associated with future extreme-scale computer architectures. This report includes a thorough qualitative and quantitative examination of three best-of-class AIM] runtime systems – Charm-++, Legion, and Uintah, all of which are in use as part of the Centers. The studies focus on each of the runtimes' programmability, performance, and mutability. Through the experiments and analysis presented, several overarching Predictive Science Academic Alliance Program II (PSAAP-II) Asc findings emerge. From a performance perspective, AIV runtimes show tremendous potential for addressing extreme- scale challenges. Empirical studies show an AM runtime can mitigate performance heterogeneity inherent to the machine itself and that Message Passing Interface (MP1) and AM11runtimes perform comparably under balanced conditions. From a programmability and mutability perspective however, none of the runtimes in this study are currently ready for use in developing production-ready Sandia ASC applications. The report concludes by recommending a co- design path forward, wherein application, programming model, and runtime system developers work together to define requirements and solutions. Such a requirements-driven co-design approach benefits the community as a whole, with widespread community engagement mitigating risk for both application developers developers. and high-performance computing runtime systein
Abstract not provided.
Abstract not provided.
FTXS 2015 - Proceedings of the 2015 Workshop on Fault Tolerance for HPC at eXtreme Scale, Part of HPDC 2015
In this position paper, we argue for improved fault-tolerance of an MPI code by introducing lightweight virtualization into the MPI interface. In particular, we outline key-value store semantics for MPI send/recv calls, thereby creating a far more expressive programming model. The general message passing semantics and imperative style of MPI application codes would remain essentially unchanged. However, the additional expressiblity of the programming model 1) enables the underlying transport layer to handle faulttolerance more transparently to the application developer, and 2) provides an evolutionary code path towards more declarative asynchronous programming models. The core contribution of this paper is an initial implementation of the DHARMA transport layer that provides the new, required functionality to support the MPI key-value store model.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Discrete event simulation provides a powerful mechanism for designing and testing new extreme- scale programming models for high-performance computing. Rather than debug, run, and wait for results on an actual system, design can first iterate through a simulator. This is particularly useful when test beds cannot be used, i.e. to explore hardware or scales that do not yet exist or are inaccessible. Here we detail the macroscale components of the structural simulation toolkit (SST). Instead of depending on trace replay or state machines, the simulator is architected to execute real code on real software stacks. Our particular user-space threading framework allows massive scales to be simulated even on small clusters. The link between the discrete event core and the threading framework allows interesting performance metrics like call graphs to be collected from a simulated run. Performance analysis via simulation can thus become an important phase in extreme-scale programming model and runtime system design via the SST macroscale components.