Publications

Results 76–100 of 231
Skip to search filters

Computational Evaluation of Mg-Salen Compounds as Subsurface Fluid Tracers: Molecular Dynamics Simulations in Toluene-Water Mixtures and Clay Mineral Nanopores

Energy and Fuels

Greathouse, Jeffery A.; Boyle, Timothy J.; Kemp, Richard A.

Molecular tracers that can be selectively placed underground and uniquely identified at the surface using simple on-site spectroscopic methods would significantly enhance subsurface fluid monitoring capabilities. To ensure their widespread utility, the solubility of these tracers must be easily tuned to oil-or water-wet conditions as well as reducing or eliminating their propensity to adsorb onto subsurface rock and/or mineral phases. In this work, molecular dynamics simulations were used to investigate the relative solubilities and mineral surface adsorption properties of three candidate tracer compounds comprising Mg-salen derivatives of varying degrees of hydrophilic character. Simulations in water-toluene liquid mixtures indicate that the partitioning of each Mg-salen compound relative to the interface is strongly influenced by the degree of hydrophobicity of the compound. Simulations of these complexes in fluid-filled mineral nanopores containing neutral (kaolinite) and negatively charged (montmorillonite) mineral surfaces reveal that adsorption tendencies depend upon a variety of parameters, including tracer chemical properties, mineral surface type, and solvent type (water or toluene). Simulation snapshots and averaged density profiles reveal insight into the solvation and adsorption mechanisms that control the partitioning of these complexes in mixed liquid phases and nanopore environments. This work demonstrates the utility of molecular simulation in the design and screening of molecular tracers for use in subsurface applications.

More Details

Atomistic Structure of Mineral Nano-aggregates from Simulated Compaction and Dewatering

Scientific Reports

Ho, Tuan A.; Greathouse, Jeffery A.; Wang, Yifeng; Criscenti, Louise C.

The porosity of clay aggregates is an important property governing chemical reactions and fluid flow in low-permeability geologic formations and clay-based engineered barrier systems. Pore spaces in clays include interlayer and interparticle pores. Under compaction and dewatering, the size and geometry of such pore spaces may vary significantly (sub-nanometer to microns) depending on ambient physical and chemical conditions. Here we report a molecular dynamics simulation method to construct a complex and realistic clay-like nanoparticle aggregate with interparticle pores and grain boundaries. The model structure is then used to investigate the effect of dewatering and water content on micro-porosity of the aggregates. The results suggest that slow dewatering would create more compact aggregates compared to fast dewatering. Furthermore, the amount of water present in the aggregates strongly affects the particle-particle interactions and hence the aggregate structure. Detailed analyses of particle-particle and water-particle interactions provide a molecular-scale view of porosity and texture development of the aggregates. The simulation method developed here may also aid in modeling the synthesis of nanostructured materials through self-assembly of nanoparticles.

More Details

Molecular Dynamics Simulation of Resin Adsorption at Kaolinite Edge Sites: Effect of Surface Deprotonation on Interfacial Structure

Journal of Physical Chemistry C

Zeitler, Todd Z.; Greathouse, Jeffery A.; Cygan, R.T.; Fredrich, J.T.; Jerauld, G.R.

Low-salinity water flooding, a method of enhanced oil recovery, consists of injecting low ionic strength fluids into an oil reservoir in order to detach oil from mineral surfaces in the underlying formation. Although highly successful in practice, the approach is not completely understood at the molecular scale. Molecular dynamics simulations have been used to investigate the effect of surface protonation on the adsorption of an anionic crude oil component on clay mineral edge surfaces. A set of interatomic potentials appropriate for edge simulations has been applied to the kaolinite (010) surface in contact with an aqueous nanopore. Decahydro-2-napthoic acid in its deprotonated form (DHNA-) was used as a representative resin component of crude oil, with monovalent and divalent counterions, to test the observed trends in low-salinity water flooding experiments. Surface models include fully protonated (neutral) and deprotonated (negative) edge sites, which require implementation of a new deprotonation scheme. The surface adsorptive properties of the kaolinite edge under neutral and deprotonated conditions have been investigated for low and high DHNA- concentrations with Na+ and Ca2+ as counterions. The tendency of DHNA- ions to coordinate with divalent (Ca2+) rather than monovalent (Na+) ions greatly influences adsorption tendencies of the anion. Additionally, the formation of net positively charged surface sites due to Ca2+ at deprotonated sites results in increased DHNA- adsorption. Divalent cations such as Ca2+ are able to efficiently bridge surface sites and organic anions. Replacing those cations with monovalent cations such as Na+ diminishes the bridging mechanism, resulting in reduced adsorption of the organic species. A clear trend of decreased DHNA- adsorption is observed in the simulations as Ca2+ is replaced by Na+ for deprotonated surfaces, as would be expected for oil detachment from reservoir formations following a low-salinity flooding event.

More Details

Adsorption of Aqueous Crude Oil Components on the Basal Surfaces of Clay Minerals: Molecular Simulations Including Salinity and Temperature Effects

Journal of Physical Chemistry C

Greathouse, Jeffery A.; Cygan, R.T.; Fredrich, J.T.; Jerauld, G.R.

Molecular simulations of the adsorption of representative organic molecules onto the basal surfaces of various clay minerals were used to assess the mechanisms of enhanced oil recovery associated with salinity changes and water flooding. Simulations at the density functional theory (DFT) and classical levels provide insights into the molecular structure, binding energy, and interfacial behavior of saturate, aromatic, and resin molecules near clay mineral surfaces. Periodic DFT calculations reveal binding geometries and ion pairing mechanisms at mineral surfaces while also providing a basis for validating the classical force field approach. Through classical molecular dynamics simulations, the influence of aqueous cations at the interface and the role of water solvation are examined to better evaluate the dynamical nature of cation-organic complexes and their coadsorption onto the clay surfaces. The extent of adsorption is controlled by the hydrophilic nature and layer charge of the clay mineral. All organic species studied showed preferential adsorption on hydrophobic mineral surfaces. However, the anionic form of the resin (decahydro-2-naphthoic acid), expected to be prevalent at near-neutral pH conditions in petroleum reservoirs, readily adsorbs to the hydrophilic kaolinite surface through a combination of cation pairing and hydrogen bonding with surface hydroxyl groups. Analysis of cation-organic pairing in both the adsorbed and desorbed states reveals a strong preference for organic anions to coordinate with divalent calcium ions rather than monovalent sodium ions, lending support to current theories regarding low-salinity water flooding.

More Details
Results 76–100 of 231
Results 76–100 of 231