Observation of vibrational properties of phyllosilicate edges via a combined molecular modeling and experimental approach was performed. Deuterium exchange was utilized to isolate edge vibrational modes from their internal counterparts. The appearance of a specific peak within the broader D2O band indicates the presence of deuteration on the edge surface, and this peak is confirmed with the simulated spectra. These results are the first to unambiguously identify spectroscopic features of phyllosilicate edge sites.
We use molecular simulations to provide a conceptual understanding of a crystalline-amorphous interface for a candidate negative thermal expansion (NTE) material. Specifically, classical molecular dynamics (MD) simulations were used to investigate the temperature and pressure dependence on structural properties of ZrW2O8. Polarizability of oxygen atoms was included to better account for the electronic charge distribution within the lattice. Constant-pressure simulations of cubic crystalline ZrW2O8 at ambient pressure reveal a slight NTE behavior, characterized by a small structural rearrangement resulting in oxygen sharing between adjacent WO4 tetrahedra. Periodic quantum calculations confirm that the MD-optimized structure is lower in energy than the idealized structure obtained from neutron diffraction experiments. Additionally, simulations of pressure-induced amorphization of ZrW2O8 at 300 K indicate that an amorphous phase forms at pressures greater than 10 GPa, and this phase persists when the pressure is decreased to 1 bar. Simulations were performed on a hybrid model consisting of amorphous ZrW2O8 in direct contact with the cubic crystalline phase. Upon equilibration at 300 K and 1 bar, the crystalline phase remains unchanged beyond a thin layer of disrupted structure at the amorphous interface. Detailed analysis reveals the transition in metal coordination at the interface.
Appropriate waste-forms for radioactive materials must isolate the radionuclides from the environment for long time periods. To accomplish this typically requires low waste-form solubility, to minimize radionuclide release to the environment. However, radiation eventually damages most waste-forms, leading to expansion, crumbling, increased exposed surface area, and faster dissolution. We have evaluated the use of a novel class of materials-ZrW2O8, Zr2P2WO12 and related compounds-that contract upon amorphization. The proposed ceramic waste-forms would consist of zoned grains, or sintered ceramics with center-loaded radionuclides and barren shells. Radiation-induced amorphization would result in core shrinkage but would not fracture the shells or overgrowths, maintaining isolation of the radionuclide. We have synthesized these phases and have evaluated their leach rates. Tungsten forms stable aqueous species at neutral to basic conditions, making it a reliable indicator of phase dissolution. ZrW2O8 leaches rapidly, releasing tungstate while Zr is retained as a solid oxide or hydroxide. Tungsten release rates remain elevated over time and are highly sensitive to contact times, suggesting that this material will not be an effective waste-form. Conversely, tungsten release rates from Zr2P2WO12 rapidly drop and are tied to P release rates; we speculate that a low-solubility protective Zr-phosphate leach layer forms, slowing further dissolution.
We have investigated cubic zirconium tungstate (ZrW2O8) using density functional perturbation theory (DFPT), along with experimental characterization to assess and validate computational results. Cubic zirconium tungstate is among the few known materials exhibiting isotropic negative thermal expansion (NTE) over a broad temperature range, including room temperature where it occurs metastably. Isotropic NTE materials are important for technological applications requiring thermal-expansion compensators in composites designed to have overall zero or adjustable thermal expansion. While cubic zirconium tungstate has attracted considerable attention experimentally, a very few computational studies have been dedicated to this well-known NTE material. Therefore, spectroscopic, mechanical and thermodynamic properties have been derived from DFPT calculations. A systematic comparison of the calculated infrared, Raman, and phonon density-of-state spectra has been made with Fourier transform far-/mid-infrared and Raman data collected in this study, as well as with available inelastic neutron scattering measurements. The thermal evolution of the lattice parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with the observed negative thermal expansion characteristics of cubic zirconium tungstate, α-ZrW2O8. These results show that this DFPT approach can be used for studying the spectroscopic, mechanical and thermodynamic properties of prospective NTE ceramic waste forms for encapsulation of radionuclides produced during the nuclear fuel cycle.
The adsorption of chemical warfare agents and their simulants by Zr (UiO-66) and rare-earth (Y, UiO-66-DOBDC analog)-based metal-organic frameworks (MOFs) is explored here using density functional theory. In particular, we investigate the role of linker functional group (OH, H) and metal atom identity on the binding energies of organophosphorous compounds. Commonly used cluster approximations for MOF secondary building units and various optimization constraints are compared with three-dimensional periodic results. An in-depth scan of potential binding sites and orientations reveals little effect due to metal identity, whereas the effect of linker functionalization depends on the substrate. This finding strongly suggests that full linkers and functional groups should be included in cluster models. Importantly, defect sites show considerably improved binding of organophosphorous compounds as compared to ideal clusters. Favorable binding is also demonstrated at two additional adsorption sites, ZrOH and μ3-OH, that likely play a role in the initial adsorption process. The results presented here portray the importance of including full three-dimensional pore structures in the adsorption process of organophosphorous compounds in MOFs; a critical first step in the degradation of these harmful chemicals.
Nanoporous materials such as metal-organic frameworks (MOFs) have attractive properties for selective capture of chemical warfare agents (CWAs). For obvious reasons, most research on adsorption of CWAs is performed with simulant molecules rather than real agents. This paper examines how effectively common CWA simulants mimic the adsorption properties of sarin and soman. To this end, we perform molecular simulations in the dilute adsorption limit for four simulants [dimethyl methylphosphonate (DMMP), diethyl chlorophosphate (DCP), diisopropyl fluorophosphate, and dimethyl p-nitrophenyl phosphate (DMNP)] and sarin and soman in a set of 2969 MOFs with experimentally known crystal structures. To establish the robustness of the conclusions with respect to the force field used in these simulations, each system was examined with two independent force fields, a "generic" force field and a density functional theory (DFT)-derived force field we established based on extensive dispersion-corrected DFT calculations of adsorption in the well-known MOF UiO-66. Our results show that when judging the performance of adsorbents using the heat of adsorption, DCP and DMMP are the best simulants for the adsorption of sarin, while DMNP is the best simulant for soman. The adsorption properties of DCP or DMMP show a strong correlation with sarin over a range of MOFs, but the correlation between DMNP and soman is considerably weaker. Comparisons of results with both force fields indicate that our main conclusions are robust with respect to the force field used to define adsorbate-MOF interactions.
The adsorption equilibrium constants of monovalent and divalent cations to material surfaces in aqueous media are central to many technological, natural, and geochemical processes. Cation adsorption-desorption is often proposed to occur in concert with proton transfer on hydroxyl-covered mineral surfaces, but to date this cooperative effect has been inferred indirectly. This work applies density functional theory-based molecular dynamics simulations of explicit liquid water/mineral interfaces to calculate metal ion desorption free energies. Monodentate adsorption of Na+, Mg2+, and Cu2+ on partially deprotonated silica surfaces are considered. Na+ is predicted to be unbound, while Cu2+ exhibits binding free energies to surface SiO- groups that are larger than those of Mg2+. The predicted trends agree with competitive adsorption measurements on fumed silica surfaces. As desorption proceeds, Cu2+ dissociates one of the H2O molecules in its first solvation shell, turning into Cu2+(OH-)(H2O)3, while Mg remains Mg2+(H2O)6. The protonation state of the SiO- group at the initial binding site does not vary monotonically with cation desorption.
Cubic zirconium tungstate (α-ZrW2O8), a well-known negative thermal expansion material, has been investigated within the framework of density functional perturbation theory (DFPT), combined with experimental characterization to assess and validate computational results. Using combined Fourier transform infrared measurements and DFPT calculations, new and extensive assignments were made for the far-infrared (<400 cm−1) spectrum of α-ZrW2O8. A systematic comparison of DFPT-simulated infrared, Raman, and phonon density-of-state spectra with Fourier transform far-/mid-infrared and Raman data collected in this study, as well as with available inelastic neutron scattering measurements, shows the superior accuracy of the PBEsol exchange-correlation functional over standard PBE calculations for studying the spectroscopic properties of this material.