Publications

Results 26–50 of 113
Skip to search filters

Development of Dynamic Ellipsometry for Measurements or Iron Conductivity at Earth's Core Conditions

Grant, Sean C.; Ao, Tommy A.; Davis, Jean-Paul D.; Dolan, Daniel H.; Seagle, Christopher T.; Lin, Jung-Fu L.; Bernstein, Aaron B.

The CHEDS researchers are engaged in a collaborative research project to study the properties of iron and iron alloys under Earth’s core conditions. The Earth’s core, inner and outer, is composed primarily of iron, thus studying iron and iron alloys at high pressure and temperature conditions will give the best estimate of its properties. Also, comparing studies of iron alloys with known properties of the core can constrain the potential light element compositions found within the core, such as fitting sound speeds and densities of iron alloys to established inner- Earth models. One of the lesser established properties of the core is the thermal conductivity, where current estimates vary by a factor of three. Therefore, one of the primary goals of this collaboration is to make relevant measurements to elucidate this conductivity.

More Details

Results from new multi-megabar shockless compression experiments at the Z machine

AIP Conference Proceedings

Davis, Jean-Paul D.; Knudson, Marcus D.; Brown, Justin L.

Sandia's Z Machine has been used to magnetically drive shockless compression of materials in a planar configuration to multi-megabar pressure levels, allowing accurate measurements of quasi-isentropic mechanical response at relatively low temperatures in the solid phase. This paper details recent improvements to design and analysis of such experiments, including the use of new data on the mechanical and optical response of lithium fluoride windows. Comparison of windowed and free-surface data on copper to 350 GPa lends confidence to the window correction method. Preliminary results are presented on gold to 500 GPa and platinum to 450 GPa; both appear stiffer than existing models.

More Details

Mechanical response of lithium fluoride under off-principal dynamic shock-ramp loading

Journal of Applied Physics

Seagle, Christopher T.; Davis, Jean-Paul D.; Knudson, Marcus D.

Single crystal lithium fluoride (LiF), oriented [100], was shock loaded and subsequently shocklessly compressed in two experiments at the Z Machine. Velocimetry measurements were employed to obtain an impactor velocity, shock transit times, and in-situ particle velocities for LiF samples up to ∼1.8 mm thick. A dual thickness Lagrangian analysis was performed on the in-situ velocimetry data to obtain the mechanical response along the loading path of these experiments. An elastic response was observed on one experiment during initial shockless compression from 100 GPa before yielding. The relatively large thickness differences utilized for the dual sample analyses (up to ∼1.8 mm) combined with a relative timing accuracy of ∼0.2 ns resulted in an uncertainty of less than 1% on density and stress at ∼200 GPa peak loading on one experiment and <4% on peak loading at ∼330 GPa for another. The stress-density analyses from these experiments compare favorably with recent equation of state models for LiF.

More Details

Daily operation of Z: an 80 TW 36-module pulsed power driver

Savage, Mark E.; Cuneo, M.E.; Davis, Jean-Paul D.; Hutsel, Brian T.; Jones, Michael J.; Jones, Peter A.; Kamm, Ryan J.; Lopez, Michael R.; Matzen, M.K.; McDaniel, D.H.M.; McKee, George R.; Maenchen, J.E.M.; Owen, A.C.O.; Porter, John L.; Prestwich, K.R.P.; Schwarz, Jens S.; Sinars, Daniel S.; Stoltzfus, Brian S.; Struve, Kenneth W.; Stygar, William A.; Wakeland, P.; White, William M.

Abstract not provided.

Optimization of Isentropic Compression Loads on Current-Adder Pulsed Power Accelerator Architectures

Reisman, David R.; Waisman, Eduardo M.; Stoltzfus, Brian S.; Stygar, William A.; Cuneo, M.E.; Haill, Thomas H.; Davis, Jean-Paul D.; Brown, Justin L.; Seagle, Christopher T.; Spielman, Rick S.

The Thor pulsed power generator is being developed at Sandia National Laboratories . The design consists of up to 288 decoupled an d transit time isolated ca pacitor - switch units , called "bricks" , that can be individually triggered to achieve a high degree of p ulse tailoring for magnetically - driven isentropic compression experiments (ICE). The connecting transmission lines are impedance matched to the bricks, a llowing the capacitor energy to be efficiently delivered to an ICE strip - line load with pe ak pressures of over 100 GPa . Thor will drive experiments to expl ore equation of state, material strength, and phase transition properties of a wide variety of materi als. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator . This technique, which is unique to the novel "current - adder" architecture used by Thor, entirely avoids the itera tive use of complex circuit models to converge to the desired electrical pulse . We describe the optimization procedure for the Thor design and show results for various materials of interest. Also, we discuss the extension of these concepts to the megajoule - class Neptune machine design. Given this design, we are able to design shockless ramp - driven experiments in the 1 TPa range of material pressure.

More Details

Conceptual design of a 10 13 -W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments

Physical Review Accelerators and Beams

Stygar, William A.; Reisman, David R.; Stoltzfus, Brian S.; Austin, Kevin N.; Benage, John F.; Breden, E.W.; Cooper, R.A.C.; Cuneo, M.E.; Davis, Jean-Paul D.; Ennis, J.B.E.; Gard, Paul D.; Greiser, G.W.G.; Gruner, Frederick R.; Haill, Thomas A.; Hutsel, Brian T.; Jones, Peter A.; LeChien, K.R.L.; Leckbee, Joshua L.; Lucero, Diego J.; McKee, George R.; Moore, James M.; Mulville, Thomas D.; Muron, David J.; Root, Seth R.; Savage, Mark E.; Sceiford, Matthew S.; Spielman, R.B.S.; Waisman, Eduardo M.; Wisher, Matthew L.

In this study, we have developed a conceptual design of a next-generation pulsed-power accelerator that is optmized for driving megajoule-class dynamic-material-physics experiments at pressures as high as 1 TPa. The design is based on an accelerator architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. Since much of the accelerator is water insulated, we refer to this machine as Neptune. The prime power source of Neptune consists of 600 independent impedance-matched Marx generators. As much as 0.8 MJ and 20 MA can be delivered in a 300-ns pulse to a 16-mΩ physics load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic equation-of-state, phase-transition, mechanical-property, and other material-physics experiments with a wide variety of well-defined drive-pressure time histories. Because Neptune can deliver on the order of a megajoule to a load, such experiments can be conducted on centimeter-scale samples at terapascal pressures with time histories as long as 1 μs.

More Details

Pulsed power accelerator for material physics experiments

Physical Review Special Topics - Accelerators and Beams

Reisman, David R.; Stoltzfus, Brian S.; Stygar, William A.; Austin, Kevin N.; Waisman, Eduardo M.; Hickman, Randy J.; Davis, Jean-Paul D.; Haill, Thomas A.; Knudson, Marcus D.; Seagle, Christopher T.; Brown, Justin L.; Goerz, D.A.; Spielman, R.B.; Goldlust, J.A.; Cravey, W.R.

We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

More Details

Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum

Journal of Applied Physics

Davis, Jean-Paul D.; Brown, Justin L.; Knudson, Marcus D.; Lemke, Raymond W.

Magnetically-driven, planar shockless-compression experiments to multi-megabar pressures were performed on tantalum samples using a stripline target geometry. Free-surface velocity waveforms were measured in 15 cases; nine of these in a dual-sample configuration with two samples of different thicknesses on opposing electrodes, and six in a single-sample configuration with a bare electrode opposite the sample. Details are given on the application of inverse Lagrangian analysis (ILA) to these data, including potential sources of error. The most significant source of systematic error, particularly for single-sample experiments, was found to arise from the pulse-shape dependent free-surface reflected wave interactions with the deviatoric-stress response of tantalum. This could cause local, possibly temporary, unloading of material from a ramp compressed state, and thus multi-value response in wave speed that invalidates the free-surface to in-material velocity mapping step of ILA. By averaging all 15 data sets, a final result for the principal quasi-isentrope of tantalum in stress-strain was obtained to a peak longitudinal stress of 330GPa with conservative uncertainty bounds of ±4.5% in stress. The result agrees well with a tabular equation of state developed at Los Alamos National Laboratory.

More Details
Results 26–50 of 113
Results 26–50 of 113