Publications

Results 151–192 of 192
Skip to search filters

Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression

Sarobol, Pylin S.; Chandross, M.; Carroll, Jay D.; Mook, William M.; Boyce, Brad B.; Kotula, Paul G.; McKenzie, Bonnie B.; Bufford, Daniel C.; Hall, Aaron C.

The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and significant plastic deformation during compressi on . On the other hand, the micron sized Al 2 O 3 particles exhibited brittle f racture in compression. In situ compression experiments showed 3um Al 2 O 3 particles fractured into pieces without observable plastic deformation in compression. Particle deformation behaviors will be used to inform Al 2 O 3 coating deposition parameters and particle - particle bonding in the consolidated Al 2 O 3 coatings.

More Details

An experimental statistical analysis of stress projection factors in BCC tantalum

Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing

Carroll, Jay D.; Clark, Blythe C.; Buchheit, Thomas E.; Boyce, Brad B.; Weinberger, Christopher R.

Crystallographic slip planes in body centered cubic (BCC) metals are not fully understood. In polycrystals, there are additional confounding effects from grain interactions. This paper describes an experimental investigation into the effects of grain orientation and neighbors on elastic–plastic strain accumulation. In situ strain fields were obtained by performing digital image correlation (DIC) on images from a scanning electron microscope (SEM) and from optical microscopy. These strain fields were statistically compared to the grain structure measured by electron backscatter diffraction (EBSD). Spearman rank correlations were performed between effective strain and six microstructural factors including four Schmid factors associated with the <111> slip direction, grain size, and Taylor factor. Modest correlations (~10%) were found for a polycrystal tension specimen. The influence of grain neighbors was first investigated by re-correlating the polycrystal data using clusters of similarly-oriented grains identified by low grain boundary misorientation angles. Second, the experiment was repeated on a tantalum oligocrystal, with through-thickness grains. Much larger correlation coefficients were found in this multicrystal due to the dearth of grain neighbors and subsurface microstructure. Finally, a slip trace analysis indicated (in agreement with statistical correlations) that macroscopic slip often occurs on {110}<111> slip systems and sometimes by pencil glide on maximum resolved shear stress planes (MRSSP). These results suggest that Schmid factors are suitable for room temperature, quasistatic, tensile deformation in tantalum as long as grain neighbor effects are accounted for.

More Details
Results 151–192 of 192
Results 151–192 of 192