Analysts develop a “no threat” bias with high false alarms. If only shown alarms for actual attacks, may never actually see an alarm. We see this in the laboratory, but not often studied in applied environments. (TSA is an exception.) In this work, near-operational paradigms are useful, but difficult to construct well. Pilot testing is critical before engaging time-limited professionals. Experimental control is difficult to balance with operational realism. Grounding near-operational experiments in basic research paradigms has both advantages and disadvantages. Despite shortcomings in our second experiment, we now have a platform for experimental investigations into the human element of physical security systems.
File fragment classification is an important step in the task of file carving in digital forensics. In file carving, files must be reconstructed based on their content as a result of their fragmented storage on disk or in memory. Existing methods for classification of file fragments typically use hand-engineered features, such as byte histograms or entropy measures. In this paper, we propose an approach using sparse coding that enables automated feature extraction. Sparse coding, or sparse dictionary learning, is an unsupervised learning algorithm, and is capable of extracting features based simply on how well those features can be used to reconstruct the original data. With respect to file fragments, we learn sparse dictionaries for n-grams, continuous sequences of bytes, of different sizes. These dictionaries may then be used to estimate n-gram frequencies for a given file fragment, but for significantly larger n-gram sizes than are typically found in existing methods which suffer from combinatorial explosion. To demonstrate the capability of our sparse coding approach, we used the resulting features to train standard classifiers, such as support vector machines over multiple file types. Experimentally, we achieved significantly better classification results with respect to existing methods, especially when the features were used in supplement to existing hand-engineered features.