Publications

Results 1–50 of 159
Skip to search filters

Component Modeling, Co-Optimization, and Trade-Space Evaluation (FY2021 Annual Progress Report)

Neely, Jason C.

This project is intended to support the development of new traction drive systems that meet the targets of 100 kW/L for power electronics and 50 kW/L for electric machines with reliable operation to 300,000 miles. To meet these goals, new designs must be identified that make use of state-of-the-art and next-generation electronic materials and design methods. Designs must exploit synergies between components, for example converters designed for high-frequency switching using wide band gap devices and ceramic capacitors. This project includes: (1) a survey of available technologies; (2) the development of design tools that consider the converter volume and performance; (3) exercising the design software to evaluate performance gaps and predict the impact of certain technologies and design approaches, i.e. GaN semiconductors, ceramic capacitors, and select topologies; and (4) building and testing hardware prototypes to validate models and concepts. Early instantiations of the design tools enable co-optimization of the power module and passive elements and provide some design guidance; later instantiations will enable the co-optimization of inverter and machine. Prototype testing begins with evaluation of simpler conversion topologies (i.e. the half-bridge boost converter) and progresses with fabrication of prototype inverter drives.

More Details

Recent Progress in Vertical Gallium Nitride Power Devices

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Dickerson, Jeramy R.; Binder, Andrew B.; Abate, Vincent M.; Smith, Michael; Pickrell, Gregory P.; Sharps, Paul; Neely, Jason C.; Rashkin, Lee; Gill, Lee G.; Goodrick, Kyle J.; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Hite, J H.; Ebrish, M.E.; Porter, M.A.; Zeng, K.Z.; Chowdhury, S.C.; Ji, D.J.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Development of Vertical GaN Power Devices for Use in Electric Vehicle Drivetrains (invited)

Kaplar, Robert K.; Binder, Andrew B.; Yates, Luke Y.; Allerman, A.A.; Crawford, Mary H.; Dickerson, Jeramy R.; Armstrong, Andrew A.; Glaser, Caleb E.; Steinfeldt, Bradley A.; Abate, Vincent M.; Pickrell, Gregory P.; Sharps, Paul; Flicker, Jack D.; Neely, Jason C.; Rashkin, Lee; Gill, Lee G.; Goodrick, Kyle J.; Monson, Todd M.; Bock, Jonathan A.; Subramania, Ganapathi S.; Scott, Ethan A.; Cooper, James A.

Abstract not provided.

Ultra-Wide-Bandgap Semiconductors: Challenges and Opportunities (invited)

Kaplar, Robert K.; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Pickrell, Gregory P.; Dickerson, Jeramy R.; Flicker, Jack D.; Neely, Jason C.; Paisley, Elizabeth A.; Baca, Albert G.; Klein, Brianna A.; Douglas, Erica A.; Reza, Shahed R.; Binder, Andrew B.; Yates, Luke Y.; Slobodyan, Oleksiy S.; Sharps, Paul; Simmons, Jerry S.; Tsao, Jeffrey Y.; Hollis, Mark A.; Johnson, Noble J.; Jones, Ken J.; Pavlidis, Dimitris P.; Goretta, Ken G.; Nemanich, Bob N.; Goodnick, Steve G.; Chowdhury, Srabanti C.

Abstract not provided.

AlGaN High Electron Mobility Transistor for Power Switches and High Temperature Logic

Klein, Brianna A.; Armstrong, Andrew A.; Allerman, A.A.; Nordquist, Christopher N.; Neely, Jason C.; Reza, Shahed R.; Douglas, Erica A.; Van Heukelom, Michael V.; Rice, Anthony R.; Patel, Victor J.; Matins, Benjamin M.; Fortune, Torben R.; Rosprim, Mary R.; Caravello, Lisa N.; DeBerry, Rebecca N.; Pipkin, Jennifer R.; Abate, Vincent M.; Kaplar, Robert K.

Abstract not provided.

Vertical GaN Power Electronics - Opportunities and Challenges (invited)

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Dickerson, Jeramy R.; Binder, Andrew B.; Pickrell, Gregory P.; Sharps, Paul; Neely, Jason C.; Rashkin, Lee; Gill, L.G.; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Ebrish, M.E.; M., Porter M.; Martinez, R.M.; Zeng, K.Z.; Ji, D.J.; Chowdhury, S.C.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Co-Optimization of Boost Converter Reliability and Volumetric Power Density [Brief]

Gill, Lee G.; Neely, Jason C.; Rashkin, Lee; Flicker, Jack D.; Kaplar, Robert K.

Optimized designs were achieved using a genetic algorithm to evaluate multi-objective trade space, including Mean-Time-Between-Failure (MTBF) and volumetric power density. This work provides a foundational platform that can be used to optimize additional power converters, such as an inverter for the EV traction drive system as well as trade-offs in thermal management due to the use of different device substrate materials.

More Details

Forced oscillations in the western interconnection with the pacific dc intertie wide area damping controller

2020 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2020

Wilches-Bernal, Felipe; Pierre, Brian J.; Schoenwald, David A.; Elliott, Ryan T.; Byrne, Raymond H.; Neely, Jason C.; Trudnowski, Daniel J.

Forced oscillations in power systems are of particular interest when they interact and reinforce inter-area oscillations. This paper determines how a previously proposed inter-area damping controller mitigates forced oscillations. The damping controller modulates active power on the Pacific DC Intertie (PDCI) based on phasor measurement units (PMU) frequency measurements. The primary goal of the controller is to improve the small signal stability of the north south B mode in the North American Western Interconnection (WI). The paper presents small signal stability analysis in a reduced order system, time-domain simulations of a detailed representation of the WI and actual system test results to demonstrate that the PDCI damping controller provides effective damping to forced oscillations in the frequency range below 1 Hz.

More Details

Energy storage design considerations for an MVDC power system

Journal of Marine Engineering and Technology

Rashkin, Lee; Neely, Jason C.; Wilson, David G.; Glover, Steven F.; Doerry, Norbert; Markle, Stephen; McCoy, Timothy J.

The U.S. Navy is investing in the development of new technologies that broaden warship capabilities and maintain U.S. naval superiority. Specifically, Naval Sea Systems Command (NAVSEA) is supporting the development of power systems technologies that enable the Navy to realise an all-electric warship. A challenge to fielding an all-electric power system architecture includes minimising the size of energy storage systems (ESS) while maintaining the response times necessary to support potential pulsed loads. This work explores the trade-off between energy storage size requirements (i.e. mass) and performance (i.e. peak power, energy storage, and control bandwidth) in the context of a power system architecture that meets the needs of the U.S. Navy. In this work, the simulated time domain responses of a representative power system were evaluated under different loading conditions and control parameters, and the results were considered in conjunction with sizing constraints of and estimated specific power and energy densities of various storage technologies. The simulation scenarios were based on representative operational vignettes, and a Ragone plot was used to illustrate the intersection of potential energy storage sizing with the energy and power density requirements of the system. Furthermore, the energy storage control bandwidth requirements were evaluated by simulation for different loading scenarios. Two approaches were taken to design an ESS: one based only on time domain power and energy requirements from simulation and another based on bandwidth (specific frequency) limitations of various technologies.

More Details

Design of the Pacific DC Intertie Wide Area Damping Controller

IEEE Transactions on Power Systems

Pierre, Brian J.; Wilches-Bernal, Felipe; Schoenwald, David A.; Elliott, Ryan T.; Trudnowski, Daniel J.; Byrne, Raymond H.; Neely, Jason C.

This paper describes the design and implementation of a proof-of-concept Pacific dc Intertie (PDCI) wide area damping controller and includes system test results on the North American Western Interconnection (WI). To damp inter-area oscillations, the controller modulates the power transfer of the PDCI, a ±500 kV dc transmission line in the WI. The control system utilizes real-time phasor measurement unit (PMU) feedback to construct a commanded power signal which is added to the scheduled power flow for the PDCI. After years of design, simulations, and development, this controller has been implemented in hardware and successfully tested in both open and closed-loop operation. The most important design specifications were safe, reliable performance, no degradation of any system modes in any circumstances, and improve damping to the controllable modes in the WI. The main finding is that the controller adds significant damping to the modes of the WI and does not adversely affect the system response in any of the test cases. The primary contribution of this paper, to the state of the art research, is the design methods and test results of the first North American real-time control system that uses wide area PMU feedback.

More Details
Results 1–50 of 159
Results 1–50 of 159