Publications

Results 126–136 of 136
Skip to search filters

Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling

Kobos, Peter H.; Roach, Jesse D.; Klise, Geoffrey T.; Krumhansl, James L.; Dewers, Thomas D.; Heath, Jason; Dwyer, Brian P.; Borns, David J.

In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system) constraints across the United States. Finally, a representative scenario for a 1,800 MW subcritical coal fired power plant (amongst other types including supercritical coal, integrated gasification combined cycle, natural gas turbine and natural gas combined cycle) can look to existing and new carbon capture, transportation, compression and sequestration technologies along with a suite of extracting and treating technologies for water to assess the system's overall physical and economic viability. Thus, this particular plant, with 90% capture, will reduce the net emissions of CO{sub 2} (original less the amount of energy and hence CO{sub 2} emissions required to power the carbon capture water treatment systems) less than 90%, and its water demands will increase by approximately 50%. These systems may increase the plant's LCOE by approximately 50% or more. This representative example suggests that scaling up these CO{sub 2} capture and sequestration technologies to many plants throughout the country could increase the water demands substantially at the regional, and possibly national level. These scenarios for all power plants and saline formations throughout U.S. can incorporate new information as it becomes available for potential new plant build out planning.

More Details

Mechanical-chemical coupling and self-organization in mudstones

Heath, Jason

Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO{sub 2} sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from the nonlinear coupling of mechanics with chemistry. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers.

More Details

Natural helium as a screening tool for assessing caprock imperfections at geologic CO2 storage sites

Energy Procedia

Heath, Jason; McPherson, Brian; Phillips, Fred; Cooper, Scott; Dewers, Thomas D.

Natural helium is a screening tool for identifying the presence or absence of caprock imperfections. Imperfections can be manifested as a variety of features or processes, including insufficiently low permeability, preferential flowpaths such as fractures and faults, and the propensity for capillary breakthrough. Theory and simulations detail how various types of imperfections affect the spatial distribution of natural helium above, within, and below caprock in a single-phase, brine-saturated system. Specifically, the distribution of natural helium can reveal the presence of preferential flowpaths through formations with low matrix permeability. The distribution patterns of helium shed insight on the size, shape, location, and connectedness of imperfections in caprock. We show how imperfections associated with characteristic distributions of natural helium will affect the retention of CO2. We discuss the advantages of natural helium, together with temperature distributions, for revealing imperfections and the optimum locations for sampling the natural tracers. This research is being carried out to support design and interpretation of ongoing field-testing by the Southwest Regional Partnership on Carbon Sequestration. Specifically, we are evaluating seal integrity of the Partnership's Pump Canyon Enhanced Coalbed Methane- CO2 Storage Demonstration, located in the San Juan Basin, New Mexico. The caprock at this site is the Kirtland Formation. This formation is composed of a variety of continental deposits (sandstones, siltstones, mudrocks, and shales) and is ideal for investigating the capability of helium to characterize sealing integrity of a very heterogeneous caprock. We present results of analyses of noble gases and a variety of petrological and petrophysical analyses on core through this caprock. These results are used to investigate the presence of imperfections and their potential impact on CO2 migration and the overall viability of utilizing natural helium as a screening tool. The authors gratefully acknowledge the U.S. Department of Energy and the National Energy Technology Laboratory for sponsoring this project. © 2009 Elsevier Ltd. All rights reserved.

More Details
Results 126–136 of 136
Results 126–136 of 136