The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) ribonucleoprotein (RNP) complex is an RNA-guided DNA-nuclease that is part of the bacterial adaptive immune system. CRISPR/Cas9 RNP has been adapted for targeted genome editing within cells and whole organisms with new applications vastly outpacing detection and quantification of gene-editing reagents. Detection of the CRISPR/Cas9 RNP within biological samples is critical for assessing gene-editing reagent delivery efficiency, retention, persistence, and distribution within living organisms. Conventional detection methods are effective, yet the expense and lack of scalability for antibody-based affinity reagents limit these techniques for clinical and/or field settings. This necessitates the development of low cost, scalable CRISPR/Cas9 RNP affinity reagents as alternatives or augments to antibodies. Herein, we report the development of the Streptococcus pyogenes anti-CRISPR/Cas9 protein, AcrIIA4, as a novel affinity reagent. An engineered cysteine linker enables covalent immobilization of AcrIIA4 onto glassy carbon electrodes functionalized via aryl diazonium chemistry for detection of CRISPR/Cas9 RNP by electrochemical, fluorescent, and colorimetric methods. Electrochemical measurements achieve a detection of 280 pM RNP in reaction buffer and 8 nM RNP in biologically representative conditions. Our results demonstrate the ability of anti-CRISPR proteins to serve as robust, specific, flexible, and economical recognition elements in biosensing/quantification devices for CRISPR/Cas9 RNP.
Gene therapy has long held promise to correct a variety of human diseases and defects. Discovery of the Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR), the mechanism of the CRISPRbased prokaryotic adaptive immune system (CRISPR-associated system, Cas), and its repurposing into a potent gene editing tool has revolutionized the field of molecular biology and generated excitement for new and improved gene therapies. Additionally, the simplicity and flexibility of the CRISPR/Cas9 site-specific nuclease system has led to its widespread use in many biological research areas including development of model cell lines, discovering mechanisms of disease, identifying disease targets, development of transgene animals and plants, and transcriptional modulation. In this review, we present the brief history and basic mechanisms of the CRISPR/Cas9 system and its predecessors (ZFNs and TALENs), lessons learned from past human gene therapy efforts, and recent modifications of CRISPR/ Cas9 to provide functions beyond gene editing. We introduce several factors that influence CRISPR/ Cas9 efficacy which must be addressed before effective in vivo human gene therapy can be realized. The focus then turns to the most difficult barrier to potential in vivo use of CRISPR/Cas9, delivery. We detail the various cargos and delivery vehicles reported for CRISPR/Cas9, including physical delivery methods (e.g. microinjection; electroporation), viral delivery methods (e.g. adeno-associated virus (AAV); full-sized adenovirus and lentivirus), and non-viral delivery methods (e.g. liposomes; polyplexes; gold particles), and discuss their relative merits. We also examine several technologies that, while not currently reported for CRISPR/Cas9 delivery, appear to have promise in this field. The therapeutic potential of CRISPR/Cas9 is vast and will only increase as the technology and its delivery improves.
Over the past 20 years, many strategies utilizing sol-gel chemistry to integrate biological cells into silica-based materials have been reported. One such strategy, Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition, shows promise as an efficient encapsulation technique due to the ability to vary the silica encapsulation morphology obtained by this process through variation of SG-CViL reaction conditions. In this report, we develop SG-CViL as a tunable, multi-purpose silica encapsulation strategy by investigating the mechanisms governing both silica particle generation and subsequent interaction with phospholipid assemblies (liposomes and living cells). Using Dynamic Light Scattering (DLS) measurements, linear and exponential silica particle growth dynamics were observed which were dependent on deposition buffer ion constituents and ion concentration. Silica particle growth followed a cluster-cluster growth mechanism at acidic pH, and a monomer-cluster growth mechanism at neutral to basic pH. Increasing silica sol aging temperature resulted in higher rates of particle growth and larger particles. DLS measurements employing PEG-coated liposomes and cationic liposomes, serving as model phospholipid assemblies, revealed that electrostatic interactions promote more stable liposome-silica interactions than hydrogen bonding and facilitate silica coating on suspension cells. However, continued silica reactivity leads to aggregation of silica-coated suspension cells, revealing the need for cell isolation to tune deposited silica thickness. Utilizing these mechanistic study insights, silica was deposited onto adherent HeLa cells under biocompatible conditions with micrometer-scale control over silica thickness, minimal cell manipulation steps, and retained cell viability over several days.
The remarkable impact encapsulation matrix chemistry can have on the bioactivity and viability of integrated living cells is reported. Two silica chemistries (aqueous silicate and alkoxysilane), and a functional component additive (glycerol), are employed to generate three distinct silica matrices. These matrices are used to encapsulate living E. coli cells engineered with a synthetic riboswitch for cell-based biosensing. Following encapsulation, membrane integrity, reproductive capability, and riboswitch-based protein expression levels and rates are measured over a 5 week period. Striking differences in E. coli bioactivity, viability, and biosensing performance are observed for cells encapsulated within the different matrices. E. coli cells encapsulated for 35 days in aqueous silicate-based (AqS) matrices showed relatively low membrane integrity, but high reproductive capability in comparison to cells encapsulated in glycerol containing sodium silicate-based (AqS + g) and alkoxysilane-based (PGS) gels. Further, cells in sodium silicate-based matrices showed increasing fluorescence output over time, resulting in a 1.8-fold higher fluorescence level, and a faster expression rate, over cells free in solution. This unusual and unique combination of biological properties demonstrates that careful design of the encapsulation matrix chemistry can improve functionality of the biocomposite material, and result in new and unexpected physiological states.
Despite significant progress in development of bioanalytical devices cost, complexity, access to reagents and lack of infrastructure have prevented use of these technologies in resource-limited regions. To provide a sustainable tool in the global effort to combat infectious diseases the diagnostic device must be low cost, simple to operate and read, robust, and have sensitivity and specificity comparable to laboratory analysis. In this mini-review we describe recent work using laser machined plastic laminates to produce diagnostic devices that are capable of a wide variety of bioanalytical measurements and show great promise towards future use in low-resource environments.
Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann
In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio-nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. The ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell-silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.
The human brain (volume=1200cm3) consumes 20W and is capable of performing > 10^16 operations/s. Current supercomputer technology has reached 1015 operations/s, yet it requires 1500m^3 and 3MW, giving the brain a 10^12 advantage in operations/s/W/cm^3. Thus, to reach exascale computation, two achievements are required: 1) improved understanding of computation in biological tissue, and 2) a paradigm shift towards neuromorphic computing where hardware circuits mimic properties of neural tissue. To address 1), we will interrogate corticostriatal networks in mouse brain tissue slices, specifically with regard to their frequency filtering capabilities as a function of input stimulus. To address 2), we will instantiate biological computing characteristics such as multi-bit storage into hardware devices with future computational and memory applications. Resistive memory devices will be modeled, designed, and fabricated in the MESA facility in consultation with our internal and external collaborators.
Magnetic resonance spectroscopy has been used in a high-risk, high-payoff search for neuronal current (NC) signals in the free induction decay (FID) data from the visual cortex of human subjects during visual stimulation. If successful, this approach could make possible the detection of neuronal currents in the brain at high spatial and temporal resolution. Our initial experiments indicated the presence of a statistically significant change in the FID containing the NC relative to FIDs with the NC absent, and this signal was consistent with the presence of NC. Unfortunately, two follow-on experiments were not able to confirm or replicate the positive findings of the first experiment. However, even if the result from the first experiment were evidence of NC in the FID, it is clear that its effect is so small, that a true NC imaging experiment would not be possible with the current instrumentation and experimental protocol used here.
ElectroNeedles technology was developed as part of an earlier Grand Challenge effort on Bio-Micro Fuel Cell project. During this earlier work, the fabrication of the ElectroNeedles was accomplished along with proof-of-concept work on several electrochemically active analytes such as glucose, quinone and ferricyanide. Additionally, earlier work demonstrated technology potential in the field of immunosensors by specifically detecting Troponin, a cardiac biomarker. The current work focused upon fabrication process reproducibility of the ElectroNeedles and then using the devices to sensitively detect p-cresol, a biomarker for kidney failure or nephrotoxicity. Valuable lessons were learned regarding fabrication assurance and quality. The detection of p-cresol was accomplished by electrochemistry as well as using fluorescence to benchmark ElectroNeedles performance. Results from these studies will serve as a guide for the future fabrication processes involving ElectroNeedles as well as provide the groundwork necessary to expand technology applications. One paper has been accepted for publication acknowledging LDRD funding (K. E. Achyuthan et al, Comb. Chem. & HTS, 2008). We are exploring the scope for a second paper describing the applications potential of this technology.
Chemical or biological sensors that are specific, sensitive, and robust allowing intelligence gathering for verification of nuclear non-proliferation treaty compliance and detouring production of weapons of mass destruction are sorely needed. Although much progress has been made in the area of biosensors, improvements in sensor lifetime, robustness, and device packaging are required before these devices become widely used. Current chemical and biological detection and identification techniques require less-than-covert sample collection followed by transport to a laboratory for analysis. In addition to being expensive and time consuming, results can often be inconclusive due to compromised sample integrity during collection and transport. We report here a demonstration of a plant based sensor technology which utilizes mature and seedling plants as chemical sensors. One can envision genetically modifying native plants at a site of interest that can report the presence of specific toxins or chemicals. In this one year project we used a developed inducible expression system to show the feasibility of plant sensors. The vector was designed as a safe, non-infectious vector which could be used to invade, replicate, and introduce foreign genes into mature host plants that then allow the plant to sense chem/bio agents. The genes introduced through the vector included a reporter gene that encodes for green fluorescent protein (GFP) and a gene that encodes for a mammalian receptor that recognizes a chemical agent. Specifically, GFP was induced by the presence of 17-{beta}-Estradiol (estrogen). Detection of fluorescence indicated the presence of the target chemical agent. Since the sensor is a plant, costly device packaging development or manufacturing of the sensor were not required. Additionally, the biological recognition and reporting elements are maintained in a living, natural environment and therefore do not suffer from lifetime disadvantages typical of most biosensing platforms. Detection of the chem/bio agent reporter (GFP) can be detected only at a specific wavelength.