Publications

Results 26–50 of 61
Skip to search filters

Controlling the column spacing in isothermal magnetic advection to enable tunable heat and mass transfer

Journal of Applied Physics

Solis, Kyle J.; Martin, James E.

Isothermal magnetic advection (IMA) is a recently discovered method of inducing highly organized, non-contact flow lattices in suspensions of magnetic particles, using only uniform ac magnetic fields of modest strength. The initiation of these vigorous flows requires neither a thermal gradient nor a gravitational field, and so can be used to transfer heat and mass in circumstances where natural convection does not occur. These advection lattices are comprised of a square lattice of antiparallel flow columns. If the column spacing is sufficiently large compared to the column length and the flow rate within the columns is sufficiently large, then one would expect efficient transfer of both heat and mass. Otherwise, the flow lattice could act as a countercurrent heat exchanger and only mass will be efficiently transferred. Although this latter case might be useful for feeding a reaction front without extracting heat, it is likely that most interest will be focused on using IMA for heat transfer. In this paper, we explore the various experimental parameters of IMA to determine which of these can be used to control the column spacing. These parameters include the field frequency, strength, and phase relation between the two field components, the liquid viscosity, and particle volume fraction. Finally, we find that the column spacing can easily be tuned over a wide range to enable the careful control of heat and mass transfer.

More Details

Field-structured magnetic platelets as a route to improved thermal interface materials

Journal of Applied Physics

Solis, Kyle J.; Martin, James E.

The development of high-performance thermal interface materials (TIMs) is crucial to enabling future generations of microelectronics because the TIM is usually the limiting thermal resistance in the heat removal path. Typical TIMs achieve modest thermal conductivities by including large volume fractions of randomly-dispersed, highly-conductive, spherical particles in a polymer resin. This paper explores field-structured magnetic platelet composites as a new approach to more effective TIMs. The motivation for this approach is rooted in shape functional theory, which shows that when the particle material has a significantly higher thermal conductivity than that of the polymer, the particle shape and orientation are the factors that limit conductivity enhancement. Oriented platelets are highly effective for heat transfer and if these are magnetic, then magnetic fields can be used to both orient and agglomerate these into structures that efficiently direct heat flow. In this paper we show that such field-structured composites have a thermal conductivity anisotropy of ∼3, and at the highest particle loading of 16 vol. we have achieved a 23-fold conductivity enhancement, which is 3-times larger than that achieved in unstructured platelet composites and 8-times greater than unstructured spherical particle composites. © 2012 American Institute of Physics.

More Details

Die/wafer sub-micron alignment strategies for semiconductor device integration

ECS Transactions

Shea-Rohwer, Lauren E.; Martin, James E.; Chu, Dahwey C.

This study explores self-aligning patterns to achieve sub-micron alignment of die/wafers. We have patterned 2-d arrays of gold lines, whose width is half the periodicity, onto substrates. When commensurate patterns are brought into contact, the surface interactions between the Au lines enables high-resolution alignment, manually. Self-assembled monolayers of alkanethiols on the Au, further enhance the surface interactions, enabling alignment in less than half the time as for the uncoated die. A computation of the alignment force and torque between two featured surfaces illustrates how best to partern surfaces to maximize the tendency to align. An array of lines with a sinusoidal modulation in their spacing is more tolerant of initial misalignment, yet retains the high registration force of periodic line arrays. The optimal registration pattern might be a single spiral, as it generates both a radial force and a torque. Such patterns on die/wafers would enable precision device integration. ©The Electrochemical Society.

More Details

Chemical strategies for die/wafer submicron alignment and bonding

Rohwer, Lauren E.; Chu, Dahwey C.; Martin, James E.

This late-start LDRD explores chemical strategies that will enable sub-micron alignment accuracy of dies and wafers by exploiting the interfacial energies of chemical ligands. We have micropatterned commensurate features, such as 2-d arrays of micron-sized gold lines on the die to be bonded. Each gold line is functionalized with alkanethiol ligands before the die are brought into contact. The ligand interfacial energy is minimized when the lines on the die are brought into registration, due to favorable interactions between the complementary ligand tails. After registration is achieved, standard bonding techniques are used to create precision permanent bonds. We have computed the alignment forces and torque between two surfaces patterned with arrays of lines or square pads to illustrate how best to maximize the tendency to align. We also discuss complex, aperiodic patterns such as rectilinear pad assemblies, concentric circles, and spirals that point the way towards extremely precise alignment.

More Details

Magnetostriction of field-structured magnetoelastomers

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

Martin, James E.; Anderson, Robert A.; Read, Douglas R.; Gulley, Gerald

We investigate the magnetostriction of field-structured magnetoelastomers, which are an important class of materials that have great potential as both sensors and actuators. Field-structured magnetoelastomers are synthesized by suspending magnetic particles in a polymeric resin and subjecting these to magnetic structuring fields during polymerization. These structuring fields can consist of as many as three orthogonal ac components, allowing a wide variety of particles structures-chains, sheets, or networks-to be formed. A principal issue is how particle structure and loading affects the magnetostriction of these materials. To investigate magnetostriction in these field-structured composites we have constructed a constant stress, optical cantilever apparatus capable of 1 ppm strain resolution. Magnetoelastomers having a wide range of particle loadings and structures are investigated, and it is shown that the observed deformation depends strongly on composite structure. The best magnetoelastomers exhibit a contractive strain of 10 000 ppm, the worst materials exhibit a negative, tensile response, which we show is due to the dominance of demagnetizing field effects over magnetostriction. Finally, some discussion is given to the surprising finding that magnetostriction is proportional to the sample prestrain. Simulations of a chain of particles in an elastomer show that particle clumping transitions can occur, but this does not account for the dependence of magnetostriction on prestrain. © 2006 The American Physical Society.

More Details

Magnetostriction of field-structured magnetoelastomers

Huber, Dale L.; Martin, James E.; Anderson, Robert A.; Frankamp, Benjamin L.

Field-structured magnetic particle composites are an important new class of materials that have great potential as both sensors and actuators. These materials are synthesized by suspending magnetic particles in a polymeric resin and subjecting these to magnetic fields while the resin polymerizes. If a simple uniaxial magnetic field is used, the particles will form chains, yielding composites whose magnetic susceptibility is enhanced along a single direction. A biaxial magnetic field, comprised of two orthogonal ac fields, forms particle sheets, yielding composites whose magnetic susceptibility is enhanced along two principal directions. A balanced triaxial magnetic field can be used to enhance the susceptibility in all directions, and biased heterodyned triaxial magnetic fields are especially effective for producing composites with a greatly enhanced susceptibility along a single axis. Magnetostriction is quadratic in the susceptibility, so increasing the composite susceptibility is important to developing actuators that function well at modest fields. To investigate magnetostriction in these field-structured composites we have constructed a sensitive, constant-stress apparatus capable of 1 ppm strain resolution. The sample geometry is designed to minimize demagnetizing field effects. With this apparatus we have demonstrated field-structured composites with nearly 10,000 ppm strain.

More Details

Using triaxial magnetic fields to create optimal particle composites

Composites Part A: Applied Science and Manufacturing

Martin, James E.

The properties of a particle composite can be controlled by organizing the particles into assemblies. The properties of the composite will depend on the structure of the particle assemblies, and for any give property there is some optimal structure. Through simulation and experiment we show that the application of heterodyned triaxial magnetic or electric fields generates structures that optimize the magnetic and dielectric properties of particle composites. We suggest that optimizing these properties optimizes other properties, such as transport properties, and we give as one example of this optimization the magnetostriction of magnetic particle composites formed in a silicone elastomer. © 2005 Elsevier Ltd. All rights reserved.

More Details

Dynamics of particle suspensions in heterodyned triaxial magnetic fields

Advances in Fluid Mechanics

Martin, James E.; Anderson, Robert A.; Williamson, Rodney L.

The dynamics of particle suspensions in heterodyned triaxial magnetic fields was discussed. Triaxial magnetic fields were used to create complex particle interactions. The interactions were observed after heterodyning of the field component was employed to produce slow oscillations. Analysis suggested the application of triaxial fields for producing improved materials.

More Details
Results 26–50 of 61
Results 26–50 of 61