Publications

Results 51–75 of 137
Skip to search filters

Sandia fracture challenge 2: Sandia California’s modeling approach

International Journal of Fracture

Karlson, Kyle N.; Foulk, James W.; Brown, Arthur B.; Veilleux, Michael V.

The second Sandia Fracture Challenge illustrates that predicting the ductile fracture of Ti-6Al-4V subjected to moderate and elevated rates of loading requires thermomechanical coupling, elasto-thermo-poro-viscoplastic constitutive models with the physics of anisotropy and regularized numerical methods for crack initiation and propagation. We detail our initial approach with an emphasis on iterative calibration and systematically increasing complexity to accommodate anisotropy in the context of an isotropic material model. Blind predictions illustrate strengths and weaknesses of our initial approach. We then revisit our findings to illustrate the importance of including anisotropy in the failure process. Mesh-independent solutions of continuum damage models having both isotropic and anisotropic yields surfaces are obtained through nonlocality and localization elements.

More Details

The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading

International Journal of Fracture

Boyce, B.L.; Kramer, S.L.B.; Bosiljevac, Thomas B.; Corona, Edmundo C.; Moore, J.A.; Elkhodary, K.; Simha, C.H.M.; Williams, B.W.; Cerrone, A.R.; Nonn, A.; Hochhalter, J.D.; Bomarito, G.F.; Warner, J.E.; Carter, B.J.; Warner, D.H.; Ingraffea, A.R.; Zhang, T.; Fang, X.; Lua, J.; Chiaruttini, V.; Mazière, M.; Feld-Payet, S.; Yastrebov, V.A.; Besson, J.; Chaboche, J.L.; Lian, J.; Di, Y.; Wu, B.; Novokshanov, D.; Vajragupta, N.; Kucharczyk, P.; Brinnel, V.; Döbereiner, B.; Münstermann, S.; Neilsen, Michael K.; Dion, K.; Karlson, Kyle N.; Foulk, James W.; Brown, A.A.; Veilleux, Michael V.; Bignell, John B.; Sanborn, S.E.; Jones, C.A.; Mattie, P.D.; Pack, K.; Wierzbicki, T.; Chi, S.W.; Lin, S.P.; Mahdavi, A.; Predan, J.; Zadravec, J.; Gross, A.J.; Ravi-Chandar, K.; Xue, L.

Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in (Formula presented.) 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.

More Details

Predicting laser weld reliability with stochastic reduced-order models. Predicting laser weld reliability

International Journal for Numerical Methods in Engineering

Field, Richard V.; Foulk, James W.; Karlson, Kyle N.

Laser welds are prevalent in complex engineering systems and they frequently govern failure. The weld process often results in partial penetration of the base metals, leaving sharp crack-like features with a high degree of variability in the geometry and material properties of the welded structure. Furthermore, accurate finite element predictions of the structural reliability of components containing laser welds requires the analysis of a large number of finite element meshes with very fine spatial resolution, where each mesh has different geometry and/or material properties in the welded region to address variability. We found that traditional modeling approaches could not be efficiently employed. Consequently, a method is presented for constructing a surrogate model, based on stochastic reduced-order models, and is proposed to represent the laser welds within the component. Here, the uncertainty in weld microstructure and geometry is captured by calibrating plasticity parameters to experimental observations of necking as, because of the ductility of the welds, necking – and thus peak load – plays the pivotal role in structural failure. The proposed method is exercised for a simplified verification problem and compared with the traditional Monte Carlo simulation with rather remarkable results.

More Details

2nd Sandia Fracture Challenge Summit: Sandia California's Modeling Approach

Karlson, Kyle N.; Brown, Arthur B.; Foulk, James W.

Team Sandia California (Team H) used the Sandia code SIERRA Solid Mechanics: Implicit (SIERRA SM) to model the SFC2 challenge problem. SIERRA SM is a Lagrangian, three-dimensional, implicit code for the analysis of solids and structures. It contains a versatile library of continuum and structural elements, and an extensive library of material models. For all SFC2 related simulations, our team used Q1P0, 8 node hexahedral elements with element side lengths on the order 0.175 mm in failure regions. To model crack initiation and failure, element death removed elements from the simulation according to a continuum damage model. SIERRA SM’s implicit dynamics, implemented with an HHT time integration scheme for numerical damping [1], was used to model the unstable failure modes of the models. We chose SIERRA SM’s isotropic Elasto Viscoplastic material model for our simulations because it contains most of the physics required to accurately model the SFC2 challenge problem such as the flexibility to include temperature and rate dependence for a material.

More Details
Results 51–75 of 137
Results 51–75 of 137