Publications

Results 1–50 of 184
Skip to search filters

Neuromorphic scaling advantages for energy-efficient random walk computations

Nature Electronics

Smith, John D.; Hill, Aaron J.; Reeder, Leah E.; Franke, Brian C.; Lehoucq, Richard B.; Parekh, Ojas D.; Severa, William M.; Aimone, James B.

Neuromorphic computing, which aims to replicate the computational structure and architecture of the brain in synthetic hardware, has typically focused on artificial intelligence applications. What is less explored is whether such brain-inspired hardware can provide value beyond cognitive tasks. Here we show that the high degree of parallelism and configurability of spiking neuromorphic architectures makes them well suited to implement random walks via discrete-time Markov chains. These random walks are useful in Monte Carlo methods, which represent a fundamental computational tool for solving a wide range of numerical computing tasks. Using IBM’s TrueNorth and Intel’s Loihi neuromorphic computing platforms, we show that our neuromorphic computing algorithm for generating random walk approximations of diffusion offers advantages in energy-efficient computation compared with conventional approaches. We also show that our neuromorphic computing algorithm can be extended to more sophisticated jump-diffusion processes that are useful in a range of applications, including financial economics, particle physics and machine learning.

More Details

Neuromorphic Graph Algorithms

Parekh, Ojas D.; Wang, Yipu W.; Ho, Yang H.; Phillips, Cynthia A.; Pinar, Ali P.; Aimone, James B.; Severa, William M.

Graph algorithms enable myriad large-scale applications including cybersecurity, social network analysis, resource allocation, and routing. The scalability of current graph algorithm implementations on conventional computing architectures are hampered by the demise of Moore’s law. We present a theoretical framework for designing and assessing the performance of graph algorithms executing in networks of spiking artificial neurons. Although spiking neural networks (SNNs) are capable of general-purpose computation, few algorithmic results with rigorous asymptotic performance analysis are known. SNNs are exceptionally well-motivated practically, as neuromorphic computing systems with 100 million spiking neurons are available, and systems with a billion neurons are anticipated in the next few years. Beyond massive parallelism and scalability, neuromorphic computing systems offer energy consumption orders of magnitude lower than conventional high-performance computing systems. We employ our framework to design and analyze new spiking algorithms for shortest path and dynamic programming problems. Our neuromorphic algorithms are message-passing algorithms relying critically on data movement for computation. For fair and rigorous comparison with conventional algorithms and architectures, which is challenging but paramount, we develop new models of data-movement in conventional computing architectures. This allows us to prove polynomial-factor advantages, even when we assume a SNN consisting of a simple grid-like network of neurons. To the best of our knowledge, this is one of the first examples of a rigorous asymptotic computational advantage for neuromorphic computing.

More Details

Mapping Stochastic Devices to Probabilistic Algorithms

Aimone, James B.; Safonov, Alexander M.

Probabilistic and Bayesian neural networks have long been proposed as a method to incorporate uncertainty about the world (both in training data and operation) into artificial intelligence applications. One approach to making a neural network probabilistic is to leverage a Monte Carlo sampling approach that samples a trained network while incorporating noise. Such sampling approaches for neural networks have not been extensively studied due to the prohibitive requirement of many computationally expensive samples. While the development of future microelectronics platforms that make this sampling more efficient is an attractive option, it has not been immediately clear how to sample a neural network and what the quality of random number generation should be. This research aimed to start addressing these two fundamental questions by examining basic “off the shelf” neural networks can be sampled through a few different mechanisms (including synapse “dropout” and neuron “dropout”) and examine how these sampling approaches can be evaluated both in terms of evaluating algorithm effectiveness and the required quality of random numbers.

More Details

Provable advantages for graph algorithms in spiking neural networks

Annual ACM Symposium on Parallelism in Algorithms and Architectures

Aimone, James B.; Ho, Yang H.; Parekh, Ojas D.; Phillips, Cynthia A.; Pinar, Ali P.; Severa, William M.; Wang, Yipu W.

We present a theoretical framework for designing and assessing the performance of algorithms executing in networks consisting of spiking artificial neurons. Although spiking neural networks (SNNs) are capable of general-purpose computation, few algorithmic results with rigorous asymptotic performance analysis are known. SNNs are exceptionally well-motivated practically, as neuromorphic computing systems with 100 million spiking neurons are available, and systems with a billion neurons are anticipated in the next few years. Beyond massive parallelism and scalability, neuromorphic computing systems offer energy consumption orders of magnitude lower than conventional high-performance computing systems. We employ our framework to design and analyze neuromorphic graph algorithms, focusing on shortest path problems. Our neuromorphic algorithms are message-passing algorithms relying critically on data movement for computation, and we develop data-movement lower bounds for conventional algorithms. A fair and rigorous comparison with conventional algorithms and architectures is challenging but paramount. We prove a polynomial-factor advantage even when we assume an SNN consisting of a simple grid-like network of neurons. To the best of our knowledge, this is one of the first examples of a provable asymptotic computational advantage for neuromorphic computing.

More Details

Low-Power Deep Learning Inference using the SpiNNaker Neuromorphic Platform

Vineyard, Craig M.; Dellana, Ryan A.; Aimone, James B.; Severa, William M.

n this presentation we will discuss recent results on using the SpiNNaker neuromorphic platform (48-chip model) for deep learning neural network inference. We use the Sandia Labs developed Whet stone spiking deep learning library to train deep multi-layer perceptrons and convolutional neural networks suitable for the spiking substrate on the neural hardware architecture. By using the massively parallel nature of SpiNNaker, we are able to achieve, under certain network topologies, substantial network tiling and consequentially impressive inference throughput. Such high-throughput systems may have eventual application in remote sensing applications where large images need to be chipped, scanned, and processed quickly. Additionally, we explore complex topologies that push the limits of the SpiNNaker routing hardware and investigate how that impacts mapping software-implemented networks to on-hardware instantiations.

More Details

Assessing a Neuromorphic Platform for use in Scientific Stochastic Sampling

Proceedings - 2021 International Conference on Rebooting Computing, ICRC 2021

Aimone, James B.; Lehoucq, Richard B.; Severa, William M.; Smith, John D.

Recent advances in neuromorphic algorithm development have shown that neural inspired architectures can efficiently solve scientific computing problems including graph decision problems and partial-integro differential equations (PIDEs). The latter requires the generation of a large number of samples from a stochastic process. While the Monte Carlo approximation of the solution of the PIDEs converges with an increasing number of sampled neuromorphic trajectories, the fidelity of samples from a given stochastic process using neuromorphic hardware requires verification. Such an exercise increases our trust in this emerging hardware and works toward unlocking its energy and scaling efficiency for scientific purposes such as synthetic data generation and stochastic simulation. In this paper, we focus our verification efforts on a one-dimensional Ornstein- Uhlenbeck stochastic differential equation. Using a discrete-time Markov chain approximation, we sample trajectories of the stochastic process across a variety of parameters on an Intel 8- Loihi chip Nahuku neuromorphic platform. Using relative entropy as a verification measure, we demonstrate that the random samples generated on Loihi are, in an average sense, acceptable. Finally, we demonstrate how Loihi's fidelity to the distribution changes as a function of the parameters of the Ornstein- Uhlenbeck equation, highlighting a trade-off between the lower-precision random number generation of the neuromorphic platform and our algorithm's ability to represent a discrete-time Markov chain.

More Details

Spiking Neural Streaming Binary Arithmetic

Proceedings - 2021 International Conference on Rebooting Computing, ICRC 2021

Aimone, James B.; Hill, Aaron J.; Severa, William M.; Vineyard, Craig M.

Boolean functions and binary arithmetic operations are central to standard computing paradigms. Accordingly, many advances in computing have focused upon how to make these operations more efficient as well as exploring what they can compute. To best leverage the advantages of novel computing paradigms it is important to consider what unique computing approaches they offer. However, for any special-purpose co-processor, Boolean functions and binary arithmetic operations are useful for, among other things, avoiding unnecessary I/O on-and-off the co-processor by pre- and post-processing data on-device. This is especially true for spiking neuromorphic architectures where these basic operations are not fundamental low-level operations. Instead, these functions require specific implementation. Here we discuss the implications of an advantageous streaming binary encoding method as well as a handful of circuits designed to exactly compute elementary Boolean and binary operations.

More Details

A Roadmap for Reaching the Potential of Brain-Derived Computing

Advanced Intelligent Systems

Aimone, James B.

Neuromorphic computing is a critical future technology for the computing industry, but it has yet to achieve its promise and has struggled to establish a cohesive research community. A large part of the challenge is that full realization of the potential of brain inspiration requires advances in both device hardware, computing architectures, and algorithms. This simultaneous development across technology scales is unprecedented in the computing field. This article presents a strategy, framed by market and policy pressures, for moving past these current technological and cultural hurdles to realize its full impact across technology. Achieving the full potential of brain-derived algorithms as well as post-complementary metal-oxide-semiconductor (CMOS) scaling neuromorphic hardware requires appropriately balancing the near-term opportunities of deep learning applications with the long-term potential of less understood opportunities in neural computing.

More Details

Solving a steady-state PDE using spiking networks and neuromorphic hardware

ACM International Conference Proceeding Series

Smith, John D.; Severa, William M.; Hill, Aaron J.; Reeder, Leah E.; Franke, Brian C.; Lehoucq, Richard B.; Parekh, Ojas D.; Aimone, James B.

The widely parallel, spiking neural networks of neuromorphic processors can enable computationally powerful formulations. While recent interest has focused on primarily machine learning tasks, the space of appropriate applications is wide and continually expanding. Here, we leverage the parallel and event-driven structure to solve a steady state heat equation using a random walk method. The random walk can be executed fully within a spiking neural network using stochastic neuron behavior, and we provide results from both IBM TrueNorth and Intel Loihi implementations. Additionally, we position this algorithm as a potential scalable benchmark for neuromorphic systems.

More Details

Crossing the Cleft: Communication Challenges Between Neuroscience and Artificial Intelligence

Frontiers in Computational Neuroscience

Chance, Frances S.; Aimone, James B.; Musuvathy, Srideep M.; Smith, Michael R.; Vineyard, Craig M.; Wang, Felix W.

Historically, neuroscience principles have heavily influenced artificial intelligence (AI), for example the influence of the perceptron model, essentially a simple model of a biological neuron, on artificial neural networks. More recently, notable recent AI advances, for example the growing popularity of reinforcement learning, often appear more aligned with cognitive neuroscience or psychology, focusing on function at a relatively abstract level. At the same time, neuroscience stands poised to enter a new era of large-scale high-resolution data and appears more focused on underlying neural mechanisms or architectures that can, at times, seem rather removed from functional descriptions. While this might seem to foretell a new generation of AI approaches arising from a deeper exploration of neuroscience specifically for AI, the most direct path for achieving this is unclear. Here we discuss cultural differences between the two fields, including divergent priorities that should be considered when leveraging modern-day neuroscience for AI. For example, the two fields feed two very different applications that at times require potentially conflicting perspectives. We highlight small but significant cultural shifts that we feel would greatly facilitate increased synergy between the two fields.

More Details

Composing neural algorithms with Fugu

ACM International Conference Proceeding Series

Aimone, James B.; Severa, William M.; Vineyard, Craig M.

Neuromorphic hardware architectures represent a growing family of potential post-Moore's Law Era platforms. Largely due to event-driving processing inspired by the human brain, these computer platforms can offer significant energy benefits compared to traditional von Neumann processors. Unfortunately there still remains considerable difficulty in successfully programming, configuring and deploying neuromorphic systems. We present the Fugu framework as an answer to this need. Rather than necessitating a developer attain intricate knowledge of how to program and exploit spiking neural dynamics to utilize the potential benefits of neuromorphic computing, Fugu is designed to provide a higher level abstraction as a hardware-independent mechanism for linking a variety of scalable spiking neural algorithms from a variety of sources. Individual kernels linked together provide sophisticated processing through compositionality. Fugu is intended to be suitable for a wide-range of neuromorphic applications, including machine learning, scientific computing, and more brain-inspired neural algorithms. Ultimately, we hope the community adopts this and other open standardization attempts allowing for free exchange and easy implementations of the ever-growing list of spiking neural algorithms.

More Details

Dynamic programming with spiking neural computing

ACM International Conference Proceeding Series

Aimone, James B.; Pinar, Ali P.; Parekh, Ojas D.; Severa, William M.; Phillips, Cynthia A.; Xu, Helen

With the advent of large-scale neuromorphic platforms, we seek to better understand the applications of neuromorphic computing to more general-purpose computing domains. Graph analysis problems have grown increasingly relevant in the wake of readily available massive data. We demonstrate that a broad class of combinatorial and graph problems known as dynamic programs enjoy simple and efficient neuromorphic implementations, by developing a general technique to convert dynamic programs to spiking neuromorphic algorithms. Dynamic programs have been studied for over 50 years and have dozens of applications across many fields.

More Details

Low-Power Deep Learning Inference using the SpiNNaker Neuromorphic Platform

ACM International Conference Proceeding Series

Vineyard, Craig M.; Dellana, Ryan A.; Aimone, James B.; Rothganger, Fredrick; Severa, William M.

With the successes deep neural networks have achieved across a range of applications, researchers have been exploring computational architectures to more efficiently execute their operation. In addition to the prevalent role of graphics processing units (GPUs), many accelerator architectures have emerged. Neuromorphic is one such particular approach which takes inspiration from the brain to guide the computational principles of the architecture including varying levels of biological realism. In this paper we present results on using the SpiNNaker neuromorphic platform (48-chip model) for deep learning neural network inference. We use the Sandia National Laboratories developed Whetstone spiking deep learning library to train deep multi-layer perceptrons and convolutional neural networks suitable for the spiking substrate on the neural hardware architecture. By using the massively parallel nature of SpiNNaker, we are able to achieve, under certain network topologies, substantial network tiling and consequentially impressive inference throughput. Such high-throughput systems may have eventual application in remote sensing applications where large images need to be chipped, scanned, and processed quickly. Additionally, we explore complex topologies that push the limits of the SpiNNaker routing hardware and investigate how that impacts mapping software-implemented networks to on-hardware instantiations.

More Details

Sparse Data Acquisition on Emerging Memory Architectures

IEEE Access

Quach, Tu-Thach Q.; Agarwal, Sapan A.; James, Conrad D.; Marinella, Matthew J.; Aimone, James B.

Emerging memory devices, such as resistive crossbars, have the capacity to store large amounts of data in a single array. Acquiring the data stored in large-capacity crossbars in a sequential fashion can become a bottleneck. We present practical methods, based on sparse sampling, to quickly acquire sparse data stored on emerging memory devices that support the basic summation kernel, reducing the acquisition time from linear to sub-linear. The experimental results show that at least an order of magnitude improvement in acquisition time can be achieved when the data are sparse. In addition, we show that the energy cost associated with our approach is competitive to that of the sequential method.

More Details

Tracking Cyber Adversaries with Adaptive Indicators of Compromise

Proceedings - 2017 International Conference on Computational Science and Computational Intelligence, CSCI 2017

Doak, Justin E.; Ingram, Joey; Mulder, Samuel A.; Naegle, John H.; Cox, Jonathan A.; Aimone, James B.; Dixon, Kevin R.; James, Conrad D.; Follett, David R.

A forensics investigation after a breach often uncovers network and host indicators of compromise (IOCs) that can be deployed to sensors to allow early detection of the adversary in the future. Over time, the adversary will change tactics, techniques, and procedures (TTPs), which will also change the data generated. If the IOCs are not kept up-to-date with the adversary's new TTPs, the adversary will no longer be detected once all of the IOCs become invalid. Tracking the Known (TTK) is the problem of keeping IOCs, in this case regular expression (regexes), up-to-date with a dynamic adversary. Our framework solves the TTK problem in an automated, cyclic fashion to bracket a previously discovered adversary. This tracking is accomplished through a data-driven approach of self-adapting a given model based on its own detection capabilities.In our initial experiments, we found that the true positive rate (TPR) of the adaptive solution degrades much less significantly over time than the naïve solution, suggesting that self-updating the model allows the continued detection of positives (i.e., adversaries). The cost for this performance is in the false positive rate (FPR), which increases over time for the adaptive solution, but remains constant for the naïve solution. However, the difference in overall detection performance, as measured by the area under the curve (AUC), between the two methods is negligible. This result suggests that self-updating the model over time should be done in practice to continue to detect known, evolving adversaries.

More Details

Spiking Neural Algorithms for Markov Process Random Walk

Proceedings of the International Joint Conference on Neural Networks

Severa, William M.; Lehoucq, Richard B.; Parekh, Ojas D.; Aimone, James B.

The random walk is a fundamental stochastic process that underlies many numerical tasks in scientific computing applications. We consider here two neural algorithms that can be used to efficiently implement random walks on spiking neuromorphic hardware. The first method tracks the positions of individual walkers independently by using a modular code inspired by the grid cell spatial representation in the brain. The second method tracks the densities of random walkers at each spatial location directly. We analyze the scaling complexity of each of these methods and illustrate their ability to model random walkers under different probabilistic conditions.

More Details

Computing with spikes: The advantage of fine-grained timing

Neural Computation

Verzi, Stephen J.; Rothganger, Fredrick R.; Parekh, Ojas D.; Quach, Tu-Thach Q.; Miner, Nadine E.; Vineyard, Craig M.; James, Conrad D.; Aimone, James B.

Neural-inspired spike-based computing machines often claim to achieve considerable advantages in terms of energy and time efficiency by using spikes for computation and communication. However, fundamental questions about spike-based computation remain unanswered. For instance, how much advantage do spike-based approaches have over conventionalmethods, and underwhat circumstances does spike-based computing provide a comparative advantage? Simply implementing existing algorithms using spikes as the medium of computation and communication is not guaranteed to yield an advantage. Here, we demonstrate that spike-based communication and computation within algorithms can increase throughput, and they can decrease energy cost in some cases. We present several spiking algorithms, including sorting a set of numbers in ascending/descending order, as well as finding the maximum or minimum ormedian of a set of numbers.We also provide an example application: a spiking median-filtering approach for image processing providing a low-energy, parallel implementation. The algorithms and analyses presented here demonstrate that spiking algorithms can provide performance advantages and offer efficient computation of fundamental operations useful in more complex algorithms.

More Details
Results 1–50 of 184
Results 1–50 of 184