Publications

Results 126–150 of 197
Skip to search filters

Bayesian calibration of the Community Land Model using surrogates

Ray, Jaideep R.; Swiler, Laura P.

We present results from the Bayesian calibration of hydrological parameters of the Community Land Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is formulated for three hydrological parameters, conditional on observations of latent heat surface fluxes over 48 months. Our calibration method uses polynomial and Gaussian process surrogates of the CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler. Posterior probability densities for the parameters are developed for two sites with different soil and vegetation covers. Our method also allows us to examine the structural error in CLM under two error models. We find that surrogate models can be created for CLM in most cases. The posterior distributions are more predictive than the default parameter values in CLM. Climatologically averaging the observations does not modify the parameters' distributions significantly. The structural error model reveals a correlation time-scale which can be used to identify the physical process that could be contributing to it. While the calibrated CLM has a higher predictive skill, the calibration is under-dispersive.

More Details

Tuning a RANS k-e model for jet-in-crossflow simulations

Ray, Jaideep R.; Arunajatesan, Srinivasan A.; DeChant, Lawrence J.

We develop a novel calibration approach to address the problem of predictive ke RANS simulations of jet-incrossflow. Our approach is based on the hypothesis that predictive ke parameters can be obtained by estimating them from a strongly vortical flow, specifically, flow over a square cylinder. In this study, we estimate three ke parameters, C%CE%BC, Ce2 and Ce1 by fitting 2D RANS simulations to experimental data. We use polynomial surrogates of 2D RANS for this purpose. We conduct an ensemble of 2D RANS runs using samples of (C%CE%BC;Ce2;Ce1) and regress Reynolds stresses to the samples using a simple polynomial. We then use this surrogate of the 2D RANS model to infer a joint distribution for the ke parameters by solving a Bayesian inverse problem, conditioned on the experimental data. The calibrated (C%CE%BC;Ce2;Ce1) distribution is used to seed an ensemble of 3D jet-in-crossflow simulations. We compare the ensemble's predictions of the flowfield, at two planes, to PIV measurements and estimate the predictive skill of the calibrated 3D RANS model. We also compare it against 3D RANS predictions using the nominal (uncalibrated) values of (C%CE%BC;Ce2;Ce1), and find that calibration delivers a significant improvement to the predictive skill of the 3D RANS model. We repeat the calibration using surrogate models based on kriging and find that the calibration, based on these more accurate models, is not much better that those obtained with simple polynomial surrogates. We discuss the reasons for this rather surprising outcome.

More Details

Kalman-filtered compressive sensing for high resolution estimation of anthropogenic greenhouse gas emissions from sparse measurements

Ray, Jaideep R.; Lee, Jina L.; Lefantzi, Sophia L.; van Bloemen Waanders, Bart G.

The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. The limited nature of the measured data leads to a severely-underdetermined estimation problem. If the estimation is performed at fine spatial resolutions, it can also be computationally expensive. In order to enable such estimations, advances are needed in the spatial representation of ffCO2 emissions, scalable inversion algorithms and the identification of observables to measure. To that end, we investigate parsimonious spatial parameterizations of ffCO2 emissions which can be used in atmospheric inversions. We devise and test three random field models, based on wavelets, Gaussian kernels and covariance structures derived from easily-observed proxies of human activity. In doing so, we constructed a novel inversion algorithm, based on compressive sensing and sparse reconstruction, to perform the estimation. We also address scalable ensemble Kalman filters as an inversion mechanism and quantify the impact of Gaussian assumptions inherent in them. We find that the assumption does not impact the estimates of mean ffCO2 source strengths appreciably, but a comparison with Markov chain Monte Carlo estimates show significant differences in the variance of the source strengths. Finally, we study if the very different spatial natures of biogenic and ffCO2 emissions can be used to estimate them, in a disaggregated fashion, solely from CO2 concentration measurements, without extra information from products of incomplete combustion e.g., CO. We find that this is possible during the winter months, though the errors can be as large as 50%.

More Details

A multiresolution spatial parametrization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions

Ray, Jaideep R.; Lee, Jina L.; Lefantzi, Sophia L.; van Bloemen Waanders, Bart G.

The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.

More Details

Nowcasting influenza outbreaks using open-source media report

Ray, Jaideep R.

We construct and verify a statistical method to nowcast influenza activity from a time-series of the frequency of reports concerning influenza related topics. Such reports are published electronically by both public health organizations as well as newspapers/media sources, and thus can be harvested easily via web crawlers. Since media reports are timely, whereas reports from public health organization are delayed by at least two weeks, using timely, open-source data to compensate for the lag in %E2%80%9Cofficial%E2%80%9D reports can be useful. We use morbidity data from networks of sentinel physicians (both the Center of Disease Control's ILINet and France's Sentinelles network) as the gold standard of influenza-like illness (ILI) activity. The time-series of media reports is obtained from HealthMap (http://healthmap.org). We find that the time-series of media reports shows some correlation ( 0.5) with ILI activity; further, this can be leveraged into an autoregressive moving average model with exogenous inputs (ARMAX model) to nowcast ILI activity. We find that the ARMAX models have more predictive skill compared to autoregressive (AR) models fitted to ILI data i.e., it is possible to exploit the information content in the open-source data. We also find that when the open-source data are non-informative, the ARMAX models reproduce the performance of AR models. The statistical models are tested on data from the 2009 swine-flu outbreak as well as the mild 2011-2012 influenza season in the U.S.A.

More Details

Are we there yet? When to stop a Markov chain while generating random graphs

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Ray, Jaideep R.; Pinar, Ali; Comandur, Seshadhri C.

Markov chains are convenient means of generating realizations of networks with a given (joint or otherwise) degree distribution, since they simply require a procedure for rewiring edges. The major challenge is to find the right number of steps to run such a chain, so that we generate truly independent samples. Theoretical bounds for mixing times of these Markov chains are too large to be practically useful. Practitioners have no useful guide for choosing the length, and tend to pick numbers fairly arbitrarily. We give a principled mathematical argument showing that it suffices for the length to be proportional to the number of desired number of edges. We also prescribe a method for choosing this proportionality constant. We run a series of experiments showing that the distributions of common graph properties converge in this time, providing empirical evidence for our claims. © 2012 Springer-Verlag.

More Details
Results 126–150 of 197
Results 126–150 of 197