Publications

Results 76–100 of 161
Skip to search filters

Structure of hydrogen-rich transverse jets in a vitiated turbulent flow

Combustion and Flame

Lyra, Sgouria L.; Wilde, Benjamin; Kolla, Hemanth K.; Seitzman, Jerry M.; Lieuwen, Timothy C.; Chen, Jacqueline H.

This paper reports the results of a joint experimental and numerical study of the flow characteristics and flame structure of a hydrogen rich jet injected normal to a turbulent, vitiated crossflow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air crossflow, the present conditions lead to a burner-attached flame that initiates uniformly around the burner edge. Significant asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/crossflow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the inert and reacting JICF. The paper concludes with an analysis of the ignition, flame characteristics, and global structure of the burner-attached flame. Chemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after ignition. The predominantly mixing limited nature of the flow after ignition is examined by computing the Takeno flame index, which shows that ~70% of the heat release occurs in non-premixed regions.

More Details

Effect of fuel composition and differential diffusion on flame stabilization in reacting syngas jets in turbulent cross-flow

Combustion and Flame

Minamoto, Yuki M.; Kolla, Hemanth K.; Grout, Ray W.; Gruber, Andrea; Chen, Jacqueline H.

Three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization are located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H2 or CO species reveals that hydrogen contributes significantly to premixing, particularly in explosive zones in the upstream leeward region, i.e. at the preferred flame stabilization location. Therefore, a small amount of H2 diffuses much faster than CO, creating relatively homogeneous mixture pockets depending on the competition with turbulent mixing. These pockets, together with high H2 reactivity, contribute to stabilizing the flame at a consistent location regardless of the CO concentration in the fuel for the present range of DNS conditions.

More Details

Impact of multi-component diffusion in turbulent combustion using direct numerical simulations

Combustion and Flame

Bruno, Claudio; Sankaran, Vaidyanathan; Kolla, Hemanth K.; Chen, Jacqueline H.

This paper presents the results of DNS of a partially premixed turbulent syngas/air flame at atmospheric pressure. The objective was to assess the importance and possible effects of molecular transport on flame behavior and structure. To this purpose DNS were performed at with two proprietary DNS codes and with three different molecular diffusion transport models: fully multi-component, mixture averaged, and imposing the Lewis number of all species to be unity. Results indicate that At the Reynolds numbers of the simulations (Returb = 600, Re = 8000) choice of molecular diffusion models affects significantly the temperature and concentration fields;Assuming Le = 1 for all species predicts temperatures up to 250 K higher than the physically realistic multi-component model;Faster molecular transport of lighter species changes the local concentration field and affects reaction pathways and chemical kinetics. A possible explanation for these observations is provided in terms of species diffusion velocity that is a strong function of gradients: thus, at sufficiently large Reynolds numbers, gradients and their effects tend to be large. The preliminary conclusion from these simulations seems to indicate molecular diffusion as the third important mechanism active in flames besides convective transport and kinetics. If confirmed by further DNS and measurements, molecular transport in high intensity turbulent flames will have to be realistically modeled to accurately predict emissions (gaseous and particulates) and other combustor performance metrics.

More Details

Direct numerical simulations of autoignition in stratified dimethyl-ether (DME)/air turbulent mixtures

Combustion and Flame

Bansal, Gaurav; Mascarenhas, Ajith; Chen, Jacqueline H.

In this paper, two- and three-dimensional direct numerical simulations (DNS) of autoignition phenomena in stratified dimethyl-ether (DME)/air turbulent mixtures are performed. A reduced DME oxidation mechanism, which was obtained using rigorous mathematical reduction and stiffness removal procedure from a detailed DME mechanism with 55 species, is used in the present DNS. The reduced DME mechanism consists of 30 chemical species. This study investigates the fundamental aspects of turbulence-mixing-autoignition interaction occurring in homogeneous charge compression ignition (HCCI) engine environments. A homogeneous isotropic turbulence spectrum is used to initialize the velocity field in the domain. The computational configuration corresponds to a constant volume combustion vessel with inert mass source terms added to the governing equations to mimic the pressure rise due to piston motion, as present in practical engines. DME autoignition is found to be a complex three-staged process; each stage corresponds to a distinct chemical kinetic pathway. The distinct role of turbulence and reaction in generating scalar gradients and hence promoting molecular transport processes are investigated. By applying numerical diagnostic techniques, the different heat release modes present in the igniting mixture are identified. In particular, the contribution of homogeneous autoignition, spontaneous ignition front propagation, and premixed deflagration towards the total heat release are quantified.

More Details

Numerical and experimental investigation of turbulent DME jet flames

Proceedings of the Combustion Institute

Bhagatwala, Ankit; Luo, Zhaoyu; Shen, Han; Sutton, Jeffrey A.; Lu, Tianfeng; Chen, Jacqueline H.

Results are presented here from a three-dimensional direct numerical simulation of a temporally-evolving planar slot jet flame and experimental measurements within a spatially-evolving axisymmetric jet flame operating with DME (dimethyl ether, CH3OCH3) as the fuel. Both simulation and experiment are conducted at a Reynolds number of 13050. The Damköhler number, stoichiometric mixture fraction and fuel and oxidizer compositions also are matched between simulation and experiment. Simultaneous OH/CH2O PLIF imaging is performed experimentally to characterize the spatial structure of the turbulent DME flames. The simulation shows a fully burning flame initially, which undergoes partial extinction and subsequently, reignition. The scalar dissipation rate (χ) increases to a value much greater than that calculated from near-extinction strained laminar flames, leading to the observed local extinction. As the turbulence decays, the local values of χ decrease and the flame reignites. The reignition process appears to be strongly dependent on the local χ value, which is consistent with previous results for simpler fuels. Statistics of OH and CH2O are compared between simulation and experiment and found to agree. The applicability of OH/CH2O (formaldehyde) product imaging as a surrogate for peak heat release rate is investigated. The concentration product is found to predict peak heat release rate extremely well in the simulation data. When this product imaging is applied to the experimental data, a similar extinction/reignition pattern also is observed in the experiments as a function of axial position. A new 30-species reduced chemical mechanism for DME was also developed as part of this work.

More Details

Structure and stabilization of hydrogen-rich transverse jets in a vitiated turbulent flow

Lyra, Sgouria L.; Kolla, Hemanth K.; Chen, Jacqueline H.; Wilde, B W.; Seitzman, J.S.; Lieuwen, T.C.L.

This paper reports the results of a joint experimental and numerical study of the ow characteristics and flame stabilization of a hydrogen rich jet injected normal to a turbulent, vitiated cross ow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air cross ow, the present conditions lead to an autoigniting, burner-attached flame that initiates uniformly around the burner edge. Significant asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/cross flow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the reacting JICF. Vorticity spectra extracted from the windward shear layer reveal that the reacting jet is globally unstable and features two high frequency peaks, including a fundamental mode whose Strouhal number of ~0.7 agrees well with previous non-reacting JICF stability studies. The paper concludes with an analysis of the ignition, ame stabilization, and global structure of the burner-attached flame. Chemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after ignition. The predominantly mixing limited nature of the flow after ignition is confirmed by computing the Takeno flame index, which shows that ~70% of the heat release occurs in non-premixed regions.

More Details

In-Situ Feature Extraction of Large Scale Combustion Simulations Using Segmented Merge Trees

International Conference for High Performance Computing, Networking, Storage and Analysis, SC

Landge, Aaditya G.; Pascucci, Valerio; Gyulassy, Attila; Bennett, Janine C.; Kolla, Hemanth K.; Chen, Jacqueline H.; Bremer, Peer T.

The ever increasing amount of data generated by scientific simulations coupled with system I/O constraints are fueling a need for in-situ analysis techniques. Of particular interest are approaches that produce reduced data representations while maintaining the ability to redefine, extract, and study features in a post-process to obtain scientific insights. This paper presents two variants of in-situ feature extraction techniques using segmented merge trees, which encode a wide range of threshold based features. The first approach is a fast, low communication cost technique that generates an exact solution but has limited scalability. The second is a scalable, local approximation that nevertheless is guaranteed to correctly extract all features up to a predefined size. We demonstrate both variants using some of the largest combustion simulations available on leadership class supercomputers. Our approach allows state-of-the-art, feature-based analysis to be performed in-situ at significantly higher frequency than currently possible and with negligible impact on the overall simulation runtime.

More Details
Results 76–100 of 161
Results 76–100 of 161