Publications

Results 101–125 of 151
Skip to search filters

Identification of the primary compensating defect level responsible for determining blocking voltage of vertical GaN power diodes

Applied Physics Letters

King, M.P.; Kaplar, Robert K.; Dickerson, Jeramy R.; Lee, Stephen R.; Allerman, A.A.; Crawford, Mary H.; Fischer, A.J.; Marinella, M.J.; Flicker, Jack D.; Fleming, Robert M.; Kizilyalli, I.C.; Aktas, O.; Armstrong, Andrew A.

Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (∼104 - 106cm-2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at Ec-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be Nt = 3 × 1012, 2 × 1015, and 5 × 1014cm-3, respectively. The Ec-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large VBD in the next-generation wide-bandgap power semiconductor devices. Thus, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.

More Details

Ultra-Wide-Bandgap Semiconductors for Generation-After-Next Power Electronics

Kaplar, Robert K.; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Fischer, Arthur J.; Dickerson, Jeramy R.; King, Michael P.; Baca, A.G.; Douglas, Erica A.; Sanchez, Carlos A.; Neely, Jason C.; Flicker, Jack D.; Zutavern, Fred J.; Mauch, Daniel L.; Brocato, Robert W.; Rashkin, Lee; Delhotal, Jarod J.; Fang, Lu F.; Kizilyalli, Isik C.; Aktas, Ozgur A.

Abstract not provided.

Reliability of power conversion systems in photovoltaic applications

Reliability of Power Electronic Converter Systems

Flicker, Jack D.; Kaplar, Robert K.

A photovoltaic (PV) inverter is a balance-of-systems (i.e., every component except for the module component whose purpose is to control and convert power flow through the PV system). Namely, the inverter transforms the nominal DC power produced by the PV module to AC power, which can be transported through the electrical power grid or used on-site by various power-consuming units (Figure 14.1). As the interface between the DC and AC sides of the system, the inverter must meet rather stringent requirements for both.

More Details

PV Systems Reliability Final Technical Report: Ground Fault Detection

Lavrova, Olga A.; Flicker, Jack D.; Johnson, Jay

We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

More Details

Recommendations for isolation monitor ground fault detectors on residential and utility-scale PV systems

2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015

Flicker, Jack D.; Johnson, Jay; Albers, Mark; Ball, Greg

PV faults have caused rooftop fires in the U.S., Europe, and elsewhere in the world. One prominent cause of past electrical fires was the ground fault detection blind spot in fuse-based protection systems uncovered by the Solar America Board for Codes and Standards (SolarABCs) steering committee in 2011. Fortunately, a number of alternatives to ground fault fuses have been identified, but there has been limited adoption and historical use of these technologies in the United States. This paper investigates the efficacy of one of these devices known as isolation monitoring (or isolation resistance monitoring, Riso) in small (∼3kW) and large (∼700 kW) arrays. Unfaulted and faulted PV arrays were monitored with Riso technology and compared to SPICE simulations to recommend appropriate thresholds to the maximize the range of ground faults which could be detected while minimizing unwanted tripping. Based on analytical and computational models, it is impossible to determine a trip threshold that provides fire safety and negates unwanted tripping issues. This paper mathematically demonstrates that appropriate Riso trip thresholds must be determined on an arrayby- array basis with sufficient leeway by system operators to adjust trip threshold settings for their particular usage cases.

More Details

Performance and reliability of PV inverter component and systems due to advanced inverter functionality

2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015

Flicker, Jack D.; Gonzalez, Sigifredo G.

In order to identify reliability issues associated with advanced inverter operation and array states (e.g. volt-VAR control, high DC/AC ratios), we have collected system and component-level electro-thermal information in a controlled laboratory environment under both nominal and advanced functionality operating conditions. The results of advanced functionality operation indicated increased thermal and electrical stress on components, which will have a negative effect on inverter reliability as these functionalities are exercised more frequently in the future.

More Details

PV Systems Reliability Final Technical Report

Lavrova, Olga A.; Flicker, Jack D.; Johnson, Jay; Armijo, Kenneth M.; Gonzalez, Sigifredo G.; Schindelholz, Eric J.; Sorensen, Neil R.; Yang, Ben Y.

The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.

More Details
Results 101–125 of 151
Results 101–125 of 151