Publications

Results 51–100 of 151
Skip to search filters

Bulk Power System Dynamics with Varying Levels of Synchronous Generators and Grid-Forming Power Inverters

Conference Record of the IEEE Photovoltaic Specialists Conference

Pierre, Brian J.; Villegas Pico, Hugo N.; Elliott, Ryan T.; Flicker, Jack D.; Lin, Yashen; Johnson, Brian B.; Eto, Joseph H.; Lasseter, Robert H.; Ellis, Abraham E.

Inverters using phase-locked loops for control depend on voltages generated by synchronous machines to operate. This might be problematic if much of the conventional generation fleet is displaced by inverters. To solve this problem, grid-forming control for inverters has been proposed as being capable of autonomously regulating grid voltages and frequency. Presently, the performance of bulk power systems with massive penetration of grid-forming inverters has not been thoroughly studied as to elucidate benefits. Hence, this paper presents inverter models with two grid-forming strategies: virtual oscillator control and droop control. The two models are specifically developed to be used in positive-sequence simulation packages and have been implemented in PSLF. The implementations are used to study the performance of bulk power grids incorporating inverters with gridforming capability. Specifically, simulations are conducted on a modified IEEE 39-bus test system and the microWECC test system with varying levels of synchronous and inverter-based generation. The dynamic performance of the tested systems with gridforming inverters during contingency events is better than cases with only synchronous generation.

More Details

Co-located Accelerated Testing of Module Level Power Electronics and Associated PV Panels

2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC

Flicker, Jack D.; Lavrova, Olga A.; Tamizh Mani, Govinda S.

In order to study the relative degradation between co-located PV modules and microinverters in an ACPV configuration, four 260 Watt PV modules and four 250 W microinverters purchased on the open market have been co-located in a thermal chamber set at a static temperature (69°C). Instantaneous electrical/thermal measurements have been taken on the microinverters with periodic dark IV measurements on the modules. After over 10,000 hours of testing, no failures or observable degradation have been seen in either the module or microinverter. Using average measured field-temperature data with Military Handbook analysis, this indicates an approximate field use of 44 years of operation lifetime for PV modules, and 13 years of operation for microinverters with reliability of 66.87% with a lower one-sided confidence level of 80%.

More Details

Hazard Analysis of Firefighter Interactions with Photovoltaic Arrays

2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC

Flicker, Jack D.; Lavrova, Olga A.; Quiroz, Jimmy E.; Zgonena, Tim; Jiang, Hai; Whitfield, Kent; Boyce, Kenneth; Courtney, Paul; Carr, John; Brazis, Paul

To determine risk of an electric shock to firefighter personnel due to contact with live parts of a damaged PV system, simulated PV arrays were constructed with multiple 'modules' connected to a central inverter. The results of this analysis demonstrate that ungrounded arrays are significantly safer than grounded arrays for reasonable module isolation resistances. Ungrounded arrays provide current hazards to personnel up to three orders of magnitude smaller than for a grounded array counterpart. While the size of the array does not affect the current hazard in grounded arrays for body resistances above 100,Ω, in ungrounded arrays, increased array size yields increased current hazards- considering that the overall fault current level is still significantly smaller than for grounded arrays. In both grounded and ungrounded arrays, the current hazard has a direct correlation to array voltage. Since the level of fault current in a grounded array can be significant, this work shows that the non- linearity of the array IV curve must be taken into account for body resistances below 600 Ω and array voltages above 1000V for accurate fault current determination. Although module and array isolation resistance is not a factor that modulates fault current in a grounded array, this resistance, Riso, has a significant effect on current hazard to the firefighter for ungrounded arrays.

More Details

Design and evaluation of hybrid switched capacitor converters for high voltage, high power density applications

Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC

Stewart, Joshua S.; Richards, J.; Delhotal, Jarod J.; Neely, J.; Flicker, Jack D.; Brocato, R.; Rashkin, L.

This work investigates the use of hybrid switched capacitor converter (HSCC) topologies with wide bandgap devices to achieve high efficiency DC-DC power conversion with high gain, high voltage outputs. This class of converter may be useful for several applications that include a medium voltage bus, such as solar PV, electric aircraft, or even all-electric ship architectures. Three converter prototypes are considered and evaluated in hardware, including a basic (unipolar) HSCC and two bipolar HSCC variants. The converter operation is discussed, and the bipolar prototypes are demonstrated to achieve high-gain, high-voltage output. Finally, the latest bipolar switched capacitor prototype is demonstrated to boost 480 V to 10 kV (Gain > 20) with 97.9% efficiency at 4.96 kW output power.

More Details

Prediction of Pareto-optimal performance improvements in a power conversion system using GaN devices

2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2017

Zhang, B.; Sudhoff, S.; Pekarek, S.; Swanson, R.; Flicker, Jack D.; Neely, J.; Delhotal, Jarod J.; Kaplar, Robert K.

Gallium Nitride (GaN) semiconductors have extremely low switching loss, high breakdown voltage, and high junction temperature rating. These characteristics enable improved device performance and thus improved switch mode power converter designs. This paper evaluates the Pareto-optimal performance improvements for a DC generation system with predicted GaN loss characteristics and a rigorous multi-objective optimization based design paradigm. The optimization results show that the application of GaN can achieve a 6.4% mass savings relative to Silicon Carbide (SiC) and 40% mass savings relative to Silicon (Si) at the same loss level for a 10 kW application.

More Details

Design and control methodology for improved operation of a HV bipolar hybrid switched capacitor converter

2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2017

Delhotal, Jarod J.; Richards, J.; Stewart, Joshua S.; Neely, J.; Flicker, Jack D.; Brocato, R.; Rashkin, L.; Lehr, Jane

In this work, a novel DC-DC converter topology, an adaptation of the Hybrid Switched Capacitor Circuit (HSCC), is considered for use in high-gain, high voltage applications that also require high efficiency and superior power density. In particular, a bipolar HSCC design is described, and a candidate control methodology is set forth and developed analytically. The converter performance is demonstrated to be consistent with analysis. In addition, the converter is demonstrated to step 460V up to 8.63 kV (gain of 19) at 3.63 kW and nearly 97.0% efficiency.

More Details

Design optimization of GaN vertical power diodes and comparison to Si and SiC

2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2017

Flicker, Jack D.; Kaplar, Robert K.

In order to determine how material characteristics percolate up to system-level improvements in power dissipation for different material systems and device types, we have developed an optimization tool for power diodes. This tool minimizes power dissipation in a diode for a given system operational regime (reverse voltage, forward current density, frequency, duty cycle, and temperature) for a variety of device types and materials. We have carried out diode optimizations for a wide range of system operating points to determine the regimes for which certain power diode materials/devices are favored. In this work, we present results comparing state-of-the-art Si and SiC merged PiN Schottky (MPS) diodes to vertical GaN (v-GaN) PiN diodes and as-yet undeveloped v-GaN Schottky barrier diodes (SBDs). The results of this work show that for all conditions tested, SiC MPS and v-GaN PiN diodes are preferred over Si MPS diodes. v-GaN PiN diodes are preferred over SiC MPS diodes for high-voltage / moderate-frequency operation with the limits of the v-GaN PiN preferred regime, increasing with increasing forward current density. If a v-GaN SBD diode were available, it would be preferred over all other devices at low to moderate voltages, for all frequencies from 100 Hz to 1 MHz.

More Details

Miniature high voltage, high temperature component package development

2016 IEEE International Power Modulator and High Voltage Conference, IPMHVC 2016

Rashkin, Lee; Brocato, R.W.; Delhotal, Jarod J.; Neely, J.C.; Flicker, Jack D.; Fang, Lu F.; Kaplar, Robert K.

With the next generation of semiconductor materials in development, significant strides in the Size, Weight, and Power (SWaP) characteristics of power conversion systems are presently underway. In particular, much of the improvements in system-level efficiencies and power densities due to wide-bandgap (WBG) and ultra-wide-bandgap (UWBG) device incorporation are realized through higher voltage, higher frequency, and higher temperature operation. Concomitantly, there is a demand for ever smaller device footprints with high voltage, high power handling ability while maintaining ultra-low inductive/capacitive parasitics for high frequency operation. For our work, we are developing small size vertical gallium nitride (GaN) and aluminum gallium nitride (AlGaN) power diodes and transistors with breakdown and hold-off voltages as high as 15kV. The small size and high power densities of these devices create stringent requirements on both the size (balanced between larger sizing for increased voltage hold-off with smaller sizing for reduced parasitics) and heat dissipation capabilities of the associated packaging. To accommodate these requirements and to be able to characterize these novel device designs, we have developed specialized packages as well as test hardware and capabilities. This work describes the requirements of these new devices, the development of the high voltage, high power packages, and the high-voltage, high-Temperature test capabilities needed to characterize and use the completed components. In the course of this work, we have settled on a multi-step methodology for assessing the performance of these new power devices, which we also present.

More Details

Notice of Removal: Accelerated testing of module level power electronics for long-term reliability

2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Flicker, Jack D.; Tamizhmani, Govindasamy; Moorthy, Mathan K.; Thiagarajan, Ramanathan; Ayyanar, Raja

This work has applied a suite of long-term reliability ATs (accelerated tests) to a variety of MLPE devices (module level power electronics such as microinverters and optimizers) from five different manufacturers. This data set is one of first (only [3] is reported for reliability testing in the literature) as well as the largest experimental set in public literature, both in sample size (5 manufacturers including both DC/DC and DC/AC units and 20 units for each test) as well as number of experiments (6 different experimental test conditions) for MLPE devices. The accelerated stress tests include thermal cycling test per IEC 61215 profile, and damp heat test per IEC 61215 profile and they were performed under powered and unpowered conditions. Included in these experiments are the first independent long-term experimental data regarding damp heat as well as the longest term (>9 month) testing of MLPE units reported in literature for thermal cycling. Additionally, this work is the first to show in situ power measurements as well as periodic efficiency measurements over length of experimental tests, demonstrating whether certain tests result in long-term degradation or immediate catastrophic failures. The result of this testing demonstrates the long-term durability and reliability of MLPE units to several accelerated environmental stressors.

More Details

Module-level paralleling of vertical GaN PiN diodes

WiPDA 2016 - 4th IEEE Workshop on Wide Bandgap Power Devices and Applications

Flicker, Jack D.; Brocato, Robert W.; Delhotal, Jarod J.; Neely, Jason; Sumner, Bjorn; Dickerson, Jeramy R.; Kaplar, Robert K.

The effects of paralleling low-current vertical Gallium Nitride (v-GaN) diodes in a custom power module are reported. Four paralleled v-GaN diodes were demonstrated to operate in a buck converter at 1.3 Apeak (792 mArms) at 240 V and 15 kHz switching frequency. Additionally, high-fidelity SPICE simulations demonstrate the effects of device parameter variation on power sharing in a power module. The device parameters studied were found to have a sub-linear relationship with power sharing, indicating a relaxed need to bin parts for paralleling. This result is very encouraging for power electronics based on low-current v-GaN and demonstrates its potential for use in high-power systems.

More Details

Switching characterization of vertical GaN PiN diodes

WiPDA 2016 - 4th IEEE Workshop on Wide Bandgap Power Devices and Applications

Matthews, C.; Flicker, Jack D.; Kaplar, Robert K.; Van Heukelom, Michael V.; Atcitty, Stanley A.; Kizilyalli, I.C.; Aktas, O.

The switching characteristics of vertical Gallium Nitride (v-GaN) diodes grown on GaN substrates are reported. v-GaN diodes were tested in a Double-Pulse Test Circuit (DPTC) and compared to test results for SiC Schottky Barrier Diodes (SBDs) and Si PiN diodes. The reported switching characteristics show that GaN diodes, like SiC SBDs, exhibit nearly negligible reverse recovery current compared to traditional Si PiN diodes. The reverse recovery for the v-GaN PiN diodes is limited by parasitics in the DPTC, precluding extraction of a meaningful recovery time. These results are very encouraging for power electronics based on v-GaN and demonstrate the potential for very fast, low-loss switching for these devices.

More Details
Results 51–100 of 151
Results 51–100 of 151