Publications

Results 201–271 of 271
Skip to search filters

Fabrication techniques for 3D metamaterials in the mid-infrared

Wendt, J.R.; Burckel, David B.; Ten Eyck, Gregory A.; Ellis, A.R.; Brener, Igal B.; Sinclair, Michael B.

The authors have developed two versions of a flexible fabrication technique known as membrane projection lithography that can produce nearly arbitrary patterns in '212 D' and fully three-dimensional (3D) structures. The authors have applied this new technique to the fabrication of split ring resonator-based metamaterials in the midinfrared. The technique utilizes electron beam lithography for resolution, pattern design flexibility, and alignment. The resulting structures are nearly three orders of magnitude smaller than equivalent microwave structures that were first used to demonstrate a negative index material. The fully 3D structures are highly isotropic and exhibit both electrically and magnetically excited resonances for incident transverse electromagnetic waves.

More Details

Fabrication of 3-D cubic unit cells with measured IR resonances

Sinclair, Michael B.; Brener, Igal B.; Ten Eyck, Gregory A.; Ellis, A.R.; Ginn, James C.; Wendt, J.R.

3-D cubic unit cell arrays containing split ring resonators were fabricated and characterized. The unit cells are {approx}3 orders-of-magnitude smaller than microwave SRR-based metamaterials and exhibit both electrically and magnetically excited resonances for normally incident TEM waves in addition to showing improved isotropic response.

More Details

Amplitude and phase-resolved measurements of optical metamaterials in the mid-infrared by phase matched electro-optic sampling

Brener, Igal B.; Passmore, Brandon S.; Ten Eyck, Gregory A.; Wendt, J.R.; Sinclair, Michael B.

We describe a time-domain spectroscopy system in the thermal infrared used for complete transmission and reflection characterization of metamaterials in amplitude and phase. The system uses a triple-output near-infrared ultrafast fiber laser, phase-locked difference frequency generation and phase-matched electro-optic sampling. We will present measurements of several metamaterials designs.

More Details

THz transceiver characterization : LDRD project 139363 final report

Lee, Mark L.; Wanke, Michael W.; Nordquist, Christopher N.; Cich, Michael C.; Wendt, J.R.; Fuller, Charles T.; Reno, J.L.

LDRD Project 139363 supported experiments to quantify the performance characteristics of monolithically integrated Schottky diode + quantum cascade laser (QCL) heterodyne mixers at terahertz (THz) frequencies. These integrated mixers are the first all-semiconductor THz devices to successfully incorporate a rectifying diode directly into the optical waveguide of a QCL, obviating the conventional optical coupling between a THz local oscillator and rectifier in a heterodyne mixer system. This integrated mixer was shown to function as a true heterodyne receiver of an externally received THz signal, a breakthrough which may lead to more widespread acceptance of this new THz technology paradigm. In addition, questions about QCL mode shifting in response to temperature, bias, and external feedback, and to what extent internal frequency locking can improve stability have been answered under this project.

More Details

Transmissive infrared frequency selective surfaces and infrared antennas : final report for LDRD 105749

Davids, Paul D.; Cruz-Cabrera, A.A.; Basilio, Lorena I.; Wendt, J.R.; Kemme, S.A.; Johnson, William Arthur.; Loui, Hung L.

Plasmonic structures open up new opportunities in photonic devices, sometimes offering an alternate method to perform a function and sometimes offering capabilities not possible with standard optics. In this LDRD we successfully demonstrated metal coatings on optical surfaces that do not adversely affect the transmission of those surfaces at the design frequency. This technology could be applied as an RF noise blocking layer across an optical aperture or as a method to apply an electric field to an active electro-optic device without affecting optical performance. We also demonstrated thin optical absorbers using similar patterned surfaces. These infrared optical antennas show promise as a method to improve performance in mercury cadmium telluride detectors. Furthermore, these structures could be coupled with other components to lead to direct rectification of infrared radiation. This possibility leads to a new method for infrared detection and energy harvesting of infrared radiation.

More Details

Nanomechanical switch for integration with CMOS logic

Proposed for publication in the Journal of Microelectronics and Micromechanics.

Czaplewski, David A.; Patrizi, G.A.; Kraus, Garth K.; Wendt, J.R.; Nordquist, Christopher N.; Wolfley, Steven L.; De Boer, Maarten P.

We designed, fabricated and measured the performance of nanoelectromechanical (NEMS) switches. Initial data are reported with one of the switch designs having a measured switching time of 400 ns and an operating voltage of 5 V. The switches operated laterally with unmeasurable leakage current in the 'off' state. Surface micromachining techniques were used to fabricate the switches. All processing was CMOS compatible. A single metal layer, defined by a single mask step, was used as the mechanical switch layer. The details of the modeling, fabrication and testing of the NEMS switches are reported.

More Details

Si and SiGe based double top gated accumulation mode single electron transistors for quantum bits

Carroll, Malcolm; Tracy, Lisa A.; Eng, Kevin E.; Ten Eyck, Gregory A.; Stevens, Jeffrey S.; Wendt, J.R.; Lilly, Michael L.

There is significant interest in forming quantum bits (qubits) out of single electron devices for quantum information processing (QIP). Information can be encoded using properties like charge or spin. Spin is appealing because it is less strongly coupled to the solid-state environment so it is believed that the quantum state can better be preserved over longer times (i.e., that is longer decoherence times may be achieved). Long spin decoherence times would allow more complex qubit operations to be completed with higher accuracy. Recently spin qubits were demonstrated by several groups using electrostatically gated modulation doped GaAs double quantum dots (DQD) [1], which represented a significant breakthrough in the solid-state field. Although no Si spin qubit has been demonstrated to date, work on Si and SiGe based spin qubits is motivated by the observation that spin decoherence times can be significantly longer than in GaAs. Spin decoherence times in GaAs are in part limited by the random spectral diffusion of the non-zero nuclear spins of the Ga and As that couple to the electron spin through the hyperfine interaction. This effect can be greatly suppressed by using a semiconductor matrix with a near zero nuclear spin background. Near zero nuclear spin backgrounds can be engineered using Si by growing {sup 28}Si enriched epitaxy. In this talk, we will present fabrication details and electrical transport results of an accumulation mode double top gated Si metal insulator semiconductor (MIS) nanostructure, Fig 1 (a) & (b). We will describe how this single electron device structure represent a path towards forming a Si based spin qubit similar in design as that demonstrated in GaAs. Potential advantages of this novel qubit structure relative to previous approaches include the combination of: no doping (i.e., not modulation doped); variable two-dimensional electron gas (2DEG) density; CMOS compatible processes; and relatively small vertical length scales to achieve smaller dots. A primary concern in this structure is defects at the insulator-silicon interface. The Sandia National Laboratories 0.35 {micro}m fab line was used for critical processing steps including formation of the gate oxide to examine the utility of a standard CMOS quality oxide silicon interface for the purpose of fabricating Si qubits. Large area metal oxide silicon (MOS) structures showed a peak mobility of 15,000 cm{sup 2}/V-s at electron densities of {approx}1 x 10{sup 12} cm{sup -2} for an oxide thickness of 10 nm. Defect density measured using standard C-V techniques was found to be greater with decreasing oxide thickness suggesting a device design trade-off between oxide thickness and quantum dot size. The quantum dot structure is completed using electron beam lithography and poly-silicon etch to form the depletion gates, Fig 1 (a). The accumulation gate is added by introducing a second insulating Al{sub 2}O{sub 3} layer, deposited by atomic layer deposition, followed by an Al top gate deposition, Fig. 1 (b). Initial single electron transistor devices using SiO{sub 2} show significant disorder in structures with relatively large critical dimensions of the order of 200-300 nm, Fig 2. This is not uncommon for large silicon structures and has been cited in the literature [2]. Although smaller structures will likely minimize the effect of disorder and well controlled small Si SETs have been demonstrated [3], the design constraints presented by disorder combined with long term concerns about effects of defects on spin decoherence time (e.g., paramagnetic centers) motivates pursuit of a 2nd generation structure that uses a compound semiconductor approach, an epitaxial SiGe barrier as shown in Fig. 2 (c). SiGe may be used as an electron barrier when combined with tensilely strained Si. The introduction of strained-Si into the double top gated device structure, however, represents additional fabrication challenges. Thermal budget is potentially constrained due to concerns related to strain relaxation. Fabrication details related to the introduction of strained silicon on insulator and SiGe barrier formation into the Sandia National Laboratories 0.35 {micro}m fab line will also be presented.

More Details

Improved etch resistance of ZEP 520A in reactive ion etching through heat and ultraviolet light treatment

Proposed for publication in the Journal of Vacuum Science and Technology B.

Czaplewski, David A.; Tallant, David T.; Patrizi, G.A.; Wendt, J.R.

The authors have developed a treatment process to improve the etch resistance of an electron beam lithography resist (ZEP 520A) to allow direct pattern transfer from the resist into a hard mask using plasma etching without a metal lift-off process. When heated to 90 C and exposed for 17 min to a dose of approximately 8 mW/cm{sup 2} at 248 nm, changes occur in the resist that are observable using infrared spectroscopy. These changes increase the etch resistance of ZEP 520A to a CF{sub 4}/O{sub 2} plasma. This article will document the observed changes in the improved etch resistance of the ZEP 520A electron beam resist.

More Details

LDRD final report on Bloch Oscillations in two-dimensional nanostructure arrays for high frequency applications

Pan, Wei P.; Lyo, S.K.; Reno, J.L.; Wendt, J.R.; Barton, Daniel L.

We have investigated the physics of Bloch oscillations (BO) of electrons, engineered in high mobility quantum wells patterned into lateral periodic arrays of nanostructures, i.e. two-dimensional (2D) quantum dot superlattices (QDSLs). A BO occurs when an electron moves out of the Brillouin zone (BZ) in response to a DC electric field, passing back into the BZ on the opposite side. This results in quantum oscillations of the electron--i.e., a high frequency AC current in response to a DC voltage. Thus, engineering a BO will yield continuously electrically tunable high-frequency sources (and detectors) for sensor applications, and be a physics tour-de-force. More than a decade ago, Bloch oscillation (BO) was observed in a quantum well superlattice (QWSL) in short-pulse optical experiments. However, its potential as electrically biased high frequency source and detector so far has not been realized. This is partially due to fast damping of BO in QWSLs. In this project, we have investigated the possibility of improving the stability of BO by fabricating lateral superlattices of periodic coupled nanostructures, such as metal grid, quantum (anti)dots arrays, in high quality GaAs/Al{sub x}Ga{sub 1-x}As heterostructures. In these nanostructures, the lateral quantum confinement has been shown theoretically to suppress the optical-phonon scattering, believed to be the main mechanism for fast damping of BO in QWSLs. Over the last three years, we have made great progress toward demonstrating Bloch oscillations in QDSLs. In the first two years of this project, we studied the negative differential conductance and the Bloch radiation induced edge-magnetoplasmon resonance. Recently, in collaboration with Prof. Kono's group at Rice University, we investigated the time-domain THz magneto-spectroscopy measurements in QDSLs and two-dimensional electron systems. A surprising DC electrical field induced THz phase flip was observed. More measurements are planned to investigate this phenomenon. In addition to their potential device applications, periodic arrays of nanostructures have also exhibited interesting quantum phenomena, such as a possible transition from a quantum Hall ferromagnetic state to a quantum Hall spin glass state. It is our belief that this project has generated and will continue to make important impacts in basic science as well as in novel solid-state, high frequency electronic device applications.

More Details

Steps toward fabricating cryogenic CMOS compatible single electron devices for future qubits

Ten Eyck, Gregory A.; Tracy, Lisa A.; Wendt, J.R.; Childs, Kenton D.; Stevens, Jeffrey S.; Lilly, Michael L.; Carroll, Malcolm; Eng, Kevin E.

We describe the development of a novel silicon quantum bit (qubit) device architecture that involves using materials that are compatible with a Sandia National Laboratories (SNL) 0.35 mum complementary metal oxide semiconductor (CMOS) process intended to operate at 100 mK. We describe how the qubit structure can be integrated with CMOS electronics, which is believed to have advantages for critical functions like fast single electron electrometry for readout compared to current approaches using radio frequency techniques. Critical materials properties are reviewed and preliminary characterization of the SNL CMOS devices at 4.2 K is presented.

More Details

High efficiency DOEs at large diffraction angles for quantum information and computing architectures

Proceedings of SPIE - The International Society for Optical Engineering

Cruz-Cabrera, A.A.; Kemme, S.A.; Wendt, J.R.; Kielpinski, D.; Streed, E.W.; Carter, T.R.; Samora, S.

We developed techniques to design higher efficiency diffractive optical elements (DOEs) with large numerical apertures (NA) for quantum computing and quantum information processing. Large NA optics encompass large solid angles and thus have high collection efficiencies. Qubits in ion trap architectures are commonly addressed and read by lasers1. Large-scale ion-trap quantum computing2 will therefore require highly parallel optical interconnects. Qubit readout in these systems requires detecting fluorescence from the nearly isotropic radiation pattern of single ions, so efficient readout requires optical interconnects with high numerical aperture. Diffractive optical element fabrication is relatively mature and utilizes lithography to produce arrays compatible with large-scale ion-trap quantum computer architectures. The primary challenge of DOEs is the loss associated with diffraction efficiency. This is due to requirements for large deflection angles, which leads to extremely small feature sizes in the outer zone of the DOE. If the period of the diffractive is between λ (the free space wavelength) and 10λ, the element functions in the vector regime. DOEs in this regime, particularly between 1.5λ and 4λ, have significant coupling to unwanted diffractive orders, reducing the performance of the lens. Furthermore, the optimal depth of the zones with periods in the vector regime differs from the overall depth of the DOE. We will present results indicating the unique behaviors around the 1.5λ and 4λ periods and methods to improve the DOE performance.

More Details

Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems

Sullivan, John P.; Czaplewski, David A.; Friedmann, Thomas A.; Modine, N.A.; Wendt, J.R.

More Details

VCSEL polarization control for chip-scale atomic clocks

Keeler, Gordon A.; Geib, K.M.; Serkland, Darwin K.; Peake, Gregory M.; Wendt, J.R.

Sandia National Laboratories and Mytek, LLC have collaborated to develop a monolithically-integrated vertical-cavity surface-emitting laser (VCSEL) assembly with controllable polarization states suitable for use in chip-scale atomic clocks. During the course of this work, a robust technique to provide polarization control was modeled and demonstrated. The technique uses deeply-etched surface gratings oriented at several different rotational angles to provide VCSEL polarization stability. A rigorous coupled-wave analysis (RCWA) model was used to optimize the design for high polarization selectivity and fabrication tolerance. The new approach to VCSEL polarization control may be useful in a number of defense and commercial applications, including chip-scale atomic clocks and other low-power atomic sensors.

More Details

Control of VCSEL polarization using deeply etched surface gratings

Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, CLEO/QELS 2006

Keeler, Gordon A.; Geib, K.M.; Serkland, Darwin K.; Peake, Gregory M.; Wendt, J.R.

We demonstrate a robust approach to VCSEL polarization control using deeply-etched surface gratings oriented at several different rotational angles. A RCWA model is used to optimize the design for high polarization selectivity and fabrication tolerance. © 2006 Optical Society of America.

More Details

Micropolarizing device for long wavelength infrared polarization imaging

Kemme, S.A.; Boye, Robert B.; Wendt, J.R.; Vawter, Gregory A.; Cruz-Cabrera, A.A.

The goal of this project is to fabricate a four-state pixelated subwavelength optical device that enables mid-wave infrared (MWIR) or long-wave infrared (LWIR) snapshot polarimetric imaging. The polarization information can help to classify imaged materials and identify objects of interest for numerous remote sensing and military applications. While traditional, sequential polarimetric imaging produces scenes with polarization information through a series of assembled images, snapshot polarimetric imaging collects the spatial distribution of all four Stokes parameters simultaneously. In this way any noise due to scene movement from one frame to the next is eliminated. We fabricated several arrays of subwavelength components for MWIR polarization imaging applications. Each pixel unit of the array consists of four elements. These elements are micropolarizers with three or four different polarizing axis orientations. The fourth element sometimes has a micro birefringent waveplate on the top of one of the micropolarizers. The linear micropolarizers were fabricated by patterning nano-scale metallic grids on a transparent substrate. A large area birefringent waveplate was fabricated by deeply etching a subwavelength structure into a dielectric substrate. The principle of making linear micropolarizers for long wavelengths is based upon strong anisotropic absorption of light in the nano-metallic grid structures. The nano-metallic grid structures are patterned with different orientations; therefore, the micropolarizers have different polarization axes. The birefringent waveplate is a deeply etched dielectric one-dimensional subwavelength grating; therefore two orthogonally polarized waves have different phase delays. Finally, in this project, we investigated the near field and diffractive effects of the subwavelength element apertures upon detection. The fabricated pixelated polarizers had a measured extinction ratios larger than 100:1 for pixel sizes in the order of 15 {micro}m by 15 {micro}m that exceed by 7 times previously reported devices. The fabricated birefringent diffractive waveplates had a total variation of phase delay rms of 9.41 degrees with an average delay of 80.6 degrees across the MWIR spectral region. We found that diffraction effects change the requirement for separation between focal plane arrays (FPA) micropolarizer arrays and birefringent waveplates arrays, originally in the order of hundreds of microns (which are the typical substrate thickness) to a few microns or less. This new requirement leads us to propose new approaches to fabricate these devices.

More Details

Edge termination effects on finite aperture polarizers for polarimetric imaging applications at mid wave IR

Proceedings of SPIE - The International Society for Optical Engineering

Cruz-Cabrera, A.A.; Kemme, S.A.; Wendt, J.R.; Boye, Robert B.; Carter, T.R.; Samora, S.

Polarimetric imaging applications at the 2 to 5 μm or Mid-Wave Infrared (MWIR) range use large pixel-count focal plane arrays (FPA) with small pixel size. This project is centered in designing, fabricating and testing micropolarizers that work in that wavelength regime and intended for that type of FPAs. The micro-polarizers will be used in conjunction with a FPA in snapshot mode and will be in the near field of the imaging device. The pixel pitches for some commercial FPAs are small enough that the finite apertures of the polarizing devices may significantly affect their performance given that their aperture size varies between 3 and 5 waves. We are interested in understanding the effect on extinction ratio due to variations in the edge terminations of a polarizer with a small aperture. Edge terminations are the spaces between the first or last wire with the perimeter of the aperture of the polarizer. While this parameter has negligible effects on a larger polarizer, it will be significant for apertures that are about 3 to 5 waves. We will present data that indicates significant variation in performance due to edge terminations.

More Details

Pixilated wideband achromatic waveplates fabricated for the mid IR using subwavelength features

Proceedings of SPIE - The International Society for Optical Engineering

Boye, Robert B.; Kemme, S.A.; Wendt, J.R.; Cruz-Cabrera, A.A.; Vawter, Gregory A.; Alford, C.R.; Carter, T.R.; Samora, S.

Subwavelength diffractive features etched into a substrate lead to form birefringence that can be utilized to produce polarization sensitive elements such as waveplates. Using etched features allows for the development of pixilated devices to be used in conjunction with focal plane arrays in polarimetric imaging systems. Typically, the main drawback from using diffractive devices is their high sensitivity to wavelength. Taking advantage of the dispersion of the form birefringence, diffractive waveplates with good achromatic characteristics can be designed. We will report on diffractive waveplates designed for minimal phase retardation error across the 2-5 micron spectral regime. The required fabrication processes of the sub-wavelength feature sizes will be discussed as well as the achromatic performance and transmission efficiency of final devices. Previous work in this area has produced good results over a subset of this wavelength band, but designing for this extended band is particularly challenging. In addition, the effect of the finite size of the apertures of the pixilated devices is of particular interest since they are designed to be used in conjunction with a detector array. The influence of small aperture sizes will also be investigated.

More Details

Fabrication issues for a chirped, subwavelength form-birefringent polarization splitter

Proceedings of SPIE - The International Society for Optical Engineering

Kemme, S.A.; Wendt, J.R.; Vawter, Gregory A.; Cruz-Cabrera, A.A.; Peters, D.W.; Boye, Robert B.; Alford, C.R.; Carter, T.R.; Samora, S.

We report here on an effort to design and fabricate a polarization splitter that utilizes form-birefringence to disperse an input beam as a function of polarization content as well as wavelength spectrum. Our approach is unique in the polarization beam splitting geometry and the potential for tailoring the polarized beams' phase fronts to correct aberrations or add focusing power. A first cut design could be realized with a chirped duty cycle grating at a single etch depth. However, this approach presents a considerable fabrication obstacle since etch depths are a strong function of feature size, or grating period. We fabricated a period of 1.0 micron form-birefringent component, with a nominal depth of 1.7 microns, in GaAs using a CAIBE system with a 2-inch ion beam source diameter. The gas flows, ion energy, and sample temperature were all optimized to yield the desired etch profile.

More Details

Diffractive Optics in the Infrared (DiOptIR) LDRD 67109 final report

Kemme, S.A.; Peters, D.W.; Shields, Eric A.; Wendt, J.R.; Vawter, Gregory A.

This diffractive optical element (DOE) LDRD is divided into two tasks. In Task 1, we develop two new DOE technologies: (1) a broad wavelength band effective anti-reflection (AR) structure and (2) a design tool to encode dispersion and polarization information into a unique diffraction pattern. In Task 2, we model, design, and fabricate a subwavelength polarization splitter. The first technology is an anti-reflective (AR) layer that may be etched into the DOE surface. For many wavelengths of interest, transmissive silicon DOEs are ideal. However, a significant portion of light (30% from each surface) is lost due to Fresnel reflection. To address this issue, we investigate a subwavelength, surface relief structure that acts as an effective AR coating. The second DOE component technology in Task 1 is a design tool to determine the optimal DOE surface relief structure that can encode the light's degree of dispersion and polarization into a unique spatial pattern. Many signals of interest have unique spatial, temporal, spectral, and polarization signatures. The ability to disperse the signal into a unique diffraction pattern would result in improved signal detection sensitivity with a simultaneous reduction in false alarm. Task 2 of this LDRD project is to investigate the modeling, design, and fabrication of subwavelength birefringent devices for polarimetric spectral sensing and imaging applications. Polarimetric spectral sensing measures the spectrum of the light and polarization state of light at each wavelength simultaneously. The capability to obtain both polarization and spectral information can help develop target/object signature and identify the target/object for several applications in NP&MC and national security.

More Details

Mechanical dissipation at elevated temperatures in tetrahedral amorphous carbon

Proposed for publication in Diamond and Related Materials

Sullivan, John P.; Friedmann, Thomas A.; Wendt, J.R.

We have measured the temperature dependence of mechanical dissipation in tetrahedral amorphous carbon flexural and torsional resonators over the temperature range from 300 to 1023 K. The mechanical dissipation was found to be controlled by defects within the material, and the magnitude and temperature dependence of the dissipation were found to depend on whether flexural or torsional vibrational modes were excited. The defects that were active under flexural stresses have a relatively flat concentration from 0.4 to 0.7 eV with an ever increasing defect concentration up to 1.9 eV. Under shear stresses (torsion), the defect activation energies increase immediately beginning at 0.4 eV, with increasing defect concentration at higher energies.

More Details

Final LDRD report : design and fabrication of advanced device structures for ultra high efficiency solid state lighting

Fischer, Arthur J.; Crawford, Mary H.; Koleske, Daniel K.; Allerman, A.A.; Bogart, Katherine B.; Wendt, J.R.; Shul, Randy J.

The goal of this one year LDRD was to improve the overall efficiency of InGaN LEDs by improving the extraction of light from the semiconductor chip. InGaN LEDs are currently the most promising technology for producing high efficiency blue and green semiconductor light emitters. Improving the efficiency of InGaN LEDs will enable a more rapid adoption of semiconductor based lighting. In this LDRD, we proposed to develop photonic structures to improve light extraction from nitride-based light emitting diodes (LEDs). While many advanced device geometries were considered for this work, we focused on the use of a photonic crystal for improved light extraction. Although resonant cavity LEDs and other advanced structures certainly have the potential to improve light extraction, the photonic crystal approach showed the most promise in the early stages of this short program. The photonic crystal (PX)-LED developed here incorporates a two dimensional photonic crystal, or photonic lattice, into a nitride-based LED. The dimensions of the photonic crystal are selected such that there are very few or no optical modes in the plane of the LED ('lateral' modes). This will reduce or eliminate any radiation in the lateral direction so that the majority of the LED radiation will be in vertical modes that escape the semiconductor, which will improve the light-extraction efficiency. PX-LEDs were fabricated using a range of hole diameters and lattice constants and compared to control LEDs without a photonic crystal. The far field patterns from the PX-LEDs were dramatically modified by the presence of the photonic crystal. An increase in LED brightness of 1.75X was observed for light measured into a 40 degree emission cone with a total increase in power of 1.5X for an unencapsulated LED.

More Details

III-Nitride LEDs with photonic crystal structures

Wendt, J.R.

Electrical operation of III-Nitride light emitting diodes (LEDs) with photonic crystal structures is demonstrated. Employing photonic crystal structures in III-Nitride LEDs is a method to increase light extraction efficiency and directionality. The photonic crystal is a triangular lattice formed by dry etching into the III-Nitride LED. A range of lattice constants is considered (a {approx} 270-340nm). The III-Nitride LED layers include a tunnel junction providing good lateral current spreading without a semi-absorbing metal current spreader as is typically done in conventional III-Nitride LEDs. These photonic crystal III-Nitride LED structures are unique because they allow for carrier recombination and light generation proximal to the photonic crystal (light extraction area) yet displaced from the absorbing metal contact. The photonic crystal Bragg scatters what would have otherwise been guided modes out of the LED, increasing the extraction efficiency. The far-field light radiation patterns are heavily modified compared to the typical III-Nitride LED's Lambertian output. The photonic crystal affects the light propagation out of the LED surface, and the radiation pattern changes with lattice size. LEDs with photonic crystals are compared to similar III-Nitride LEDs without the photonic crystal in terms of extraction, directionality, and emission spectra.

More Details

Nano-electromechanical oscillators (NEMOs) for RF technologies

Friedmann, Thomas A.; Boyce, Brad B.; Czaplewski, David A.; Dyck, Christopher D.; Webster, James R.; Carton, Andrew J.; Carr, Dustin W.; Keeler, Bianca E.; Wendt, J.R.; Tallant, David T.

Nano-electromechanical oscillators (NEMOs), capacitively-coupled radio frequency (RF) MEMS switches incorporating dissipative dielectrics, new processing technologies for tetrahedral amorphous carbon (ta-C) films, and scientific understanding of dissipation mechanisms in small mechanical structures were developed in this project. NEMOs are defined as mechanical oscillators with critical dimensions of 50 nm or less and resonance frequencies approaching 1 GHz. Target applications for these devices include simple, inexpensive clocks in electrical circuits, passive RF electrical filters, or platforms for sensor arrays. Ta-C NEMO arrays were used to demonstrate a novel optomechanical structure that shows remarkable sensitivity to small displacements (better than 160 fm/Hz {sup 1/2}) and suitability as an extremely sensitive accelerometer. The RF MEMS capacitively-coupled switches used ta-C as a dissipative dielectric. The devices showed a unipolar switching response to a unipolar stimulus, indicating the absence of significant dielectric charging, which has historically been the major reliability issue with these switches. This technology is promising for the development of reliable, low-power RF switches. An excimer laser annealing process was developed that permits full in-plane stress relaxation in ta-C films in air under ambient conditions, permitting the application of stress-reduced ta-C films in areas where low thermal budget is required, e.g. MEMS integration with pre-existing CMOS electronics. Studies of mechanical dissipation in micro- and nano-scale ta-C mechanical oscillators at room temperature revealed that mechanical losses are limited by dissipation associated with mechanical relaxation in a broad spectrum of defects with activation energies for mechanical relaxation ranging from 0.35 eV to over 0.55 eV. This work has established a foundation for the creation of devices based on nanomechanical structures, and outstanding critical research areas that need to be addressed for the successful application of these technologies have been identified.

More Details

Final report on grand challenge LDRD project : a revolution in lighting : building the science and technology base for ultra-efficient solid-state lighting

Simmons, J.A.; Fischer, Arthur J.; Crawford, Mary H.; Abrams, B.L.; Biefeld, Robert M.; Koleske, Daniel K.; Allerman, A.A.; Figiel, J.J.; Creighton, J.R.; Coltrin, Michael E.; Tsao, Jeffrey Y.; Mitchell, Christine C.; Kerley, Thomas M.; Wang, George T.; Bogart, Katherine B.; Seager, Carleton H.; Campbell, Jonathan C.; Follstaedt, D.M.; Norman, Adam K.; Kurtz, S.R.; Wright, Alan F.; Myers, S.M.; Missert, Nancy A.; Copeland, Robert G.; Provencio, P.N.; Wilcoxon, Jess P.; Hadley, G.R.; Wendt, J.R.; Kaplar, Robert K.; Shul, Randy J.; Rohwer, Lauren E.; Tallant, David T.; Simpson, Regina L.; Moffat, Harry K.; Salinger, Andrew G.; Pawlowski, Roger P.; Emerson, John A.; Thoma, Steven T.; Cole, Phillip J.; Boyack, Kevin W.; Garcia, Marie L.; Allen, Mark S.; Burdick, Brent B.; Rahal, Nabeel R.; Monson, Mary A.; Chow, Weng W.; Waldrip, Karen E.

This SAND report is the final report on Sandia's Grand Challenge LDRD Project 27328, 'A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-state Lighting.' This project, which for brevity we refer to as the SSL GCLDRD, is considered one of Sandia's most successful GCLDRDs. As a result, this report reviews not only technical highlights, but also the genesis of the idea for Solid-state Lighting (SSL), the initiation of the SSL GCLDRD, and the goals, scope, success metrics, and evolution of the SSL GCLDRD over the course of its life. One way in which the SSL GCLDRD was different from other GCLDRDs was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and other Department of Energy (DOE) national laboratories - to support a national initiative in SSL R&D. Sandia was a major player in publicizing the tremendous energy savings potential of SSL, and in helping to develop, unify and support community consensus for such an initiative. Hence, our activities in this area, discussed in Chapter 6, were substantial: white papers; SSL technology workshops and roadmaps; support for the Optoelectronics Industry Development Association (OIDA), DOE and Senator Bingaman's office; extensive public relations and media activities; and a worldwide SSL community website. Many science and technology advances and breakthroughs were also enabled under this GCLDRD, resulting in: 55 publications; 124 presentations; 10 book chapters and reports; 5 U.S. patent applications including 1 already issued; and 14 patent disclosures not yet applied for. Twenty-six invited talks were given, at prestigious venues such as the American Physical Society Meeting, the Materials Research Society Meeting, the AVS International Symposium, and the Electrochemical Society Meeting. This report contains a summary of these science and technology advances and breakthroughs, with Chapters 1-5 devoted to the five technical task areas: 1 Fundamental Materials Physics; 2 111-Nitride Growth Chemistry and Substrate Physics; 3 111-Nitride MOCVD Reactor Design and In-Situ Monitoring; 4 Advanced Light-Emitting Devices; and 5 Phosphors and Encapsulants. Chapter 7 (Appendix A) contains a listing of publications, presentations, and patents. Finally, the SSL GCLDRD resulted in numerous actual and pending follow-on programs for Sandia, including multiple grants from DOE and the Defense Advanced Research Projects Agency (DARPA), and Cooperative Research and Development Agreements (CRADAs) with SSL companies. Many of these follow-on programs arose out of contacts developed through our External Advisory Committee (EAC). In h s and other ways, the EAC played a very important role. Chapter 8 (Appendix B) contains the full (unedited) text of the EAC reviews that were held periodically during the course of the project.

More Details

Investigation of 2D laterally dispersive photonic crystal structures : LDRD 33602 final report

Vawter, Gregory A.; Peters, D.W.; Wendt, J.R.; Hadley, G.R.; Vawter, Gregory A.; Peake, Gregory M.; Guo, Junpeng; Subramania, Ganapathi S.

Artificially structured photonic lattice materials are commonly investigated for their unique ability to block and guide light. However, an exciting aspect of photonic lattices which has received relatively little attention is the extremely high refractive index dispersion within the range of frequencies capable of propagating within the photonic lattice material. In fact, it has been proposed that a negative refractive index may be realized with the correct photonic lattice configuration. This report summarizes our investigation, both numerically and experimentally, into the design and performance of such photonic lattice materials intended to optimize the dispersion of refractive index in order to realize new classes of photonic devices.

More Details

Arrayed resonant subwavelength gratings : LDRD 38618 final report

Kemme, S.A.; Kemme, S.A.; Peters, D.W.; Wendt, J.R.; Carter, T.R.; Samora, S.; Hadley, G.R.; Warren, M.E.; Grotbeck, Carter L.

This report describes a passive, optical component called resonant subwavelength gratings (RSGs), which can be employed as one element in an RSG array. An RSG functions as an extremely narrow wavelength and angular band reflector, or mode selector. Theoretical studies predict that the infinite, laterally-extended RSG can reflect 100% of the resonant light while transmitting the balance of the other wavelengths. Experimental realization of these remarkable predictions has been impacted primarily by fabrication challenges. Even so, we will present large area (1.0mm) RSG reflectivity as high as 100.2%, normalized to deposited gold. Broad use of the RSG will only truly occur in an accessible micro-optical system. This program at Sandia is a normal incidence array configuration of RSGs where each array element resonates with a distinct wavelength to act as a dense array of wavelength- and mode-selective reflectors. Because of the array configuration, RSGs can be matched to an array of pixels, detectors, or chemical/biological cells for integrated optical sensing. Micro-optical system considerations impact the ideal, large area RSG performance by requiring finite extent devices and robust materials for the appropriate wavelength. Theoretical predictions and experimental measurements are presented that demonstrate the component response as a function of decreasing RSG aperture dimension and off-normal input angular incidence.

More Details

Turning the microcavity resonant wavelength in a 2D photonic crystal by modifying the cavity geometry

Proposed for publication in Applied Physics Letters.

Subramania, Ganapathi S.; Lin, Shung W.; Wendt, J.R.; Rivera, Jonathan M.

High-quality-factor microcavities in two-dimensional photonic crystals at optical frequencies have a number of technological applications, such as cavity quantum electrodynamics, optical switching, filtering, and wavelength multiplexing. For such applications, it is useful to have a simple approach to tune the microcavity resonant wavelength. In this letter, we propose a microcavity design by which we can tune the resonant wavelength by changing the cavity geometry while still obtaining a high quality factor.

More Details

Nanostructured Materials Integrated in Microfabricated Optical Devices

Sasaki, Darryl Y.; Samora, S.; Warren, M.E.; Sinclair, Michael B.; Sasaki, Darryl Y.; Last, Julie A.; Bondurant, Bruce B.; Brinker, C.J.; Kemme, S.A.; Wendt, J.R.; Carter, T.R.

This project combined nanocomposite materials with microfabricated optical device structures for the development of microsensor arrays. For the nanocomposite materials we have designed, developed, and characterized self-assembling, organic/inorganic hybrid optical sensor materials that offer highly selective, sensitive, and reversible sensing capability with unique hierarchical nanoarchitecture. Lipid bilayers and micellar polydiacetylene provided selective optical response towards metal ions (Pb(II), Hg(II)), a lectin protein (Concanavalin A), temperature, and organic solvent vapor. These materials formed as composites in silica sol-gels to impart physical protection of the self-assembled structures, provide a means for thin film surface coatings, and allow facile transport of analytes. The microoptical devices were designed and prepared with two- and four-level diffraction gratings coupled with conformal gold coatings on fused silica. The structure created a number of light reflections that illuminated multiple spots along the silica surface. These points of illumination would act as the excitation light for the fluorescence response of the sensor materials. Finally, we demonstrate an integrated device using the two-level diffraction grating coupled with the polydiacetylene/silica material.

More Details

Final Report on LDRD Project: Development of Quantum Tunneling Transistors for Practical Circuit Applications

Simmons, J.A.; Lyo, S.K.; Baca, Wes E.; Reno, J.L.; Lilly, Michael L.; Wendt, J.R.; Wanke, Michael W.

The goal of this LDRD was to engineer further improvements in a novel electron tunneling device, the double electron layer tunneling transistor (DELTT). The DELTT is a three terminal quantum device, which does not require lateral depletion or lateral confinement, but rather is entirely planar in configuration. The DELTT's operation is based on 2D-2D tunneling between two parallel 2D electron layers in a semiconductor double quantum well heterostructure. The only critical dimensions reside in the growth direction, thus taking full advantage of the single atomic layer resolution of existing semiconductor growth techniques such as molecular beam epitaxy. Despite these advances, the original DELTT design suffered from a number of performance short comings that would need to be overcome for practical applications. These included (i)a peak voltage too low ({approx}20 mV) to interface with conventional electronics and to be robust against environmental noise, (ii) a low peak current density, (iii) a relatively weak dependence of the peak voltage on applied gate voltage, and (iv) an operating temperature that, while fairly high, remained below room temperature. In this LDRD we designed and demonstrated an advanced resonant tunneling transistor that incorporates structural elements both of the DELTT and of conventional double barrier resonant tunneling diodes (RTDs). Specifically, the device is similar to the DELTT in that it is based on 2D-2D tunneling and is controlled by a surface gate, yet is also similar to the RTD in that it has a double barrier structure and a third collector region. Indeed, the device may be thought of either as an RTD with a gate-controlled, fully 2D emitter, or alternatively, as a ''3-layer DELTT,'' the name we have chosen for the device. This new resonant tunneling transistor retains the original DELTT advantages of a planar geometry and sharp 2D-2D tunneling characteristics, yet also overcomes the performance shortcomings of the original DELTT design. In particular, it exhibits the high peak voltages and current densities associated with conventional RTDs, allows sensitive control of the peak voltage by the control gate, and operates nearly at room temperature. Finally, we note under this LDRD we also investigated the use of three layer DELTT structures as long wavelength (Terahertz) detectors using photon-assisted tunneling. We have recently observed a narrowband (resonant) tunable photoresponse in related structures consisting of grating-gated double quantum wells, and report on that work here as well.

More Details

Four-function optical switch with LIGA alignment plates

Proceedings of SPIE - The International Society for Optical Engineering

Kemme, S.A.; Spahn, Olga B.; Christenson, Todd R.; Sweatt, W.C.; Wendt, J.R.; Peters, D.W.; Carter, T.R.; Samora, S.

The design and on-going fabrication of an opto-electro-mechanical microsystem that acts as a four-function optical fiber switch will be presented. The four functions of the 2×2 optical switch include 1) Normal mode, where channel A and channel B pass light straight through, 2) Loopback mode, where light originating in channel A is detected in the B leg, 3) Monitor A mode, where a probe pulse is inserted into channel B and any reflections are detected in the A leg, and 4) Monitor B mode, the compliment of 3) above. The Monitor A and Monitor B modes allow the microsystem to operate as an Optical Time Domain Reflectometer (OTDR). High spatial frequency gratings etched in fused silica configure the light beams through free-space substrate-mode propagation. The design for an OTDR-mode transmission grating that normally passes light from an incidence angle of 45 degrees within the silica substrate as well as passes light from a normal incidence straight through the silica will be discussed. A miniature commercial drive motor, positioned with LIGA alignment plates, rotates the optical grating disk into one of the four implemented function positions. The impact of required tolerances and packaging limitations on the optics, LIGA alignment plates, and the complete microsystem will be presented.

More Details

Photonics Integration Devices and Technologies

Vawter, Gregory A.; Lin, Shawn-Yu L.; Sullivan, Charles T.; Zubrzycki, Walter J.; Chow, Weng W.; Allerman, A.A.; Wendt, J.R.

We have used selective AlGaAs oxidation, dry-etching, and high-gain semiconductor laser simulation to create new in-plane lasers with interconnecting passive waveguides for use in high-density photonic circuits and future integration of photonics with electronics. Selective oxidation and doping of semiconductor heterostructures have made vertical cavity surface emitting lasers (VCSELs) into the world's most efficient low-power lasers. We apply oxidation technology to improve edge-emitting lasers and photonic-crystal waveguides, making them suitable for monolithic integrated microsystems. Two types of lasers are investigated: (1) a ridge laser with resonant coupling to an output waveguide; (2) a selectively-oxidized laser with a low active volume and potentially sub-milliAmp threshold current. Emphasis is on development of high-performance lasers suited for monolithic integration with photonic circuit elements.

More Details

Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 μm wavelengths

Optics Letters

Chow, Edmond; Lin, Shawn-Yu L.; Wendt, J.R.; Johnson, S.G.; Joannopoulos, J.D.

Based on a photonic-crystal slab structure, a 60° photonic-crystal waveguide bend is successfully fabricated. Its bending efficiency within the photonic bandgap is measured, and near 100% efficiency is observed at certain frequencies near the valence band edge. The bending radius is ∼1 μm at a wavelength of λ ∼ 1.55 μm. The measured η spectrum also agrees well with a finite-difference time-domain simulation. © 2001 Optical Society of America.

More Details

Fabrication of Diffractive Optical Elements for an Integrated Compact Optical-MEMS Laser Scanner

Journal of Vacuum Science and Technology B

Wendt, J.R.; Vawter, Gregory A.; Spahn, Olga B.; Sweatt, W.C.; Warren, M.E.; Reyes, David N.

The authors describe the microfabrication of a multi-level diffractive optical element (DOE) onto a micro-electromechanical system (MEMS) as a key element in an integrated compact optical-MEMS laser scanner. The DOE is a four-level off-axis microlens fabricated onto a movable polysilicon shuttle. The microlens is patterned by electron beam lithography and etched by reactive ion beam etching. The DOE was fabricated on two generations of MEMS components. The first generation design uses a shuttle suspended on springs and displaced by a linear rack. The second generation design uses a shuttle guided by roller bearings and driven by a single reciprocating gear. Both the linear rack and the reciprocating gear are driven by a microengine assembly. The compact design is based on mounting the MEMS module and a vertical cavity surface emitting laser (VCSEL) onto a fused silica substrate that contains the rest of the optical system. The estimated scan range of the system is {+-}4{degree} with a spot size of 0.5 mm.

More Details

Magnetoconductance of Independently Tunable Tunnel-Coupled Double Quantum Wires

Physica E

Simmons, J.A.; Lyo, S.K.; Wendt, J.R.; Reno, J.L.; Simmons, J.A.

The authors report on their recent experimental studies of vertically-coupled quantum point contacts subject to in-plane magnetic fields. Using a novel flip-chip technique, mutually aligned split gates on both sides of a sub micron thick double quantum well heterostructure define a closely-coupled pair of ballistic one-dimensional (1D) constrictions. They observe quantized conductance steps due to each quantum well and demonstrate independent control of each ID constriction width. In addition, a novel magnetoconductance feature at {approximately}6 T is observed when a magnetic field is applied perpendicular to both the current and growth directions. This conductance dip is observed only when 1D subbands are populated in both the top and bottom constrictions. This data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands.

More Details

Integration of optoelectronics and MEMS by free-space micro-optics

Warren, M.E.; Sniegowski, Jeffry J.; Spahn, Olga B.; Sweatt, W.C.; Shul, Randy J.; Wendt, J.R.; Vawter, Gregory A.; Reyes, David N.; Rodgers, Murray S.

This report represents the completion of a three-year Laboratory-Directed Research and Development (LDRD) program to investigate combining microelectromechanical systems (MEMS) with optoelectronic components as a means of realizing compact optomechanical subsystems. Some examples of possible applications are laser beam scanning, switching and routing and active focusing, spectral filtering or shattering of optical sources. The two technologies use dissimilar materials with significant compatibility problems for a common process line. This project emphasized a hybrid approach to integrating optoelectronics and MEMS. Significant progress was made in developing processing capabilities for adding optical function to MEMS components, such as metal mirror coatings and through-vias in the substrate. These processes were used to demonstrate two integration examples, a MEMS discriminator driven by laser illuminated photovoltaic cells and a MEMS shutter or chopper. Another major difficulty with direct integration is providing the optical path for the MEMS components to interact with the light. The authors explored using folded optical paths in a transparent substrate to provide the interconnection route between the components of the system. The components can be surface-mounted by flip-chip bonding to the substrate. Micro-optics can be fabricated into the substrate to reflect and refocus the light so that it can propagate from one device to another and them be directed out of the substrate into free space. The MEMS components do not require the development of transparent optics and can be completely compatible with the current 5-level polysilicon process. They report progress on a MEMS-based laser scanner using these concepts.

More Details

Monolithic GaAs surface acoustic wave chemical microsensor array

Hietala, Vincent M.; Casalnuovo, Stephen A.; Heller, Edwin J.; Wendt, J.R.; Frye-Mason, Gregory C.; Baca, A.G.

A four-channel surface acoustic wave (SAW) chemical sensor array with associated RF electronics is monolithically integrated onto one GaAs IC. The sensor operates at 690 MHz from an on-chip SAW based oscillator and provides simple DC voltage outputs by using integrated phase detectors. This sensor array represents a significant advance in microsensor technology offering miniaturization, increased chemical selectivity, simplified system assembly, improved sensitivity, and inherent temperature compensation.

More Details

Three-dimensional control of light in a two-dimensional photonic crystal slab

Nature

Allerman, A.A.; Lin, Shawn-Yu L.; Lin, Shawn-Yu L.; Wendt, J.R.; Vawter, Gregory A.; Zubrzycki, Walter J.

A two-dimensional (2D) photonic crystal is an attractive alternative and complimentary to its 3D counterpart, due to fabrication simplicity. A 2D crystal, however, confines light only in the 2D plane, but not in the third direction, the z-direction. Earlier experiments show that such a 2D system can exist, providing that the boundary effect in z-direction is negligible and that light is collimated in the 2D plane. Nonetheless, the usefulness of such 2D crystals is limited because they are incapable of guiding light in z-direction, which leads to diffraction loss. This drawback presents a major obstacle for realizing low-loss 2D crystal waveguides, bends and thresholdless lasers. A recent theoretical calculation, though, suggests a novel way to eliminate such a loss with a 2D photonic crystal slab. The concept of a lightcone is introduced as a criterion for fully guiding and controlling light. Although the leaky modes of a crystal slab have been studied, there have until now no experimental reports on probing its guided modes and band gaps. In this paper, a waveguide-coupled 2D photonic crystal slab is successfully fabricated from a GaAs/Al{sub x}O{sub y} material system and its intrinsic transmission properties are studied. The crystal slab is shown to have a strong 2D band gap at {lambda} {approximately} 1.5 {micro}m. Light attenuates as much as {approximately}5dB per period in the gap, the strongest ever reported for any 2D photonic crystal in optical {lambda}. More importantly, for the first time, the crystal slab is shown to be capable of controlling light fully in all three-dimensions. The lightcone criterion is also experimentally confirmed.

More Details

Integrated optical systems for excitation delivery and broadband detection in micro-fluidic electrochromatography

Proceedings of SPIE - The International Society for Optical Engineering

Kemme, S.A.; Warren, M.E.; Sweatt, W.C.; Wendt, J.R.; Bailey, C.G.; Matzke, C.M.; Allerman, A.A.; Arnold, D.W.; Carter, T.R.; Asbill, R.E.; Samora, S.

We have designed and assembled two generations of integrated micro-optical systems that deliver pump light and detect broadband laser-induced fluorescence in micro-fluidic chemical separation systems employing electrochromatography. The goal is to maintain the sensitivity attainable with larger, tabletop machines while decreasing package size and increasing throughput (by decreasing the required chemical volume). One type of micro-optical system uses vertical-cavity surface-emitting lasers (VCSELs) as the excitation source. Light from the VCSELs is relayed with four-level surface relief diffractive optical elements (DOEs) and delivered to the chemical volume through substrate-mode propagation. Indirect fluorescence from dye-quenched chemical species is collected and collimated with a high numerical aperture DOE. A filter blocks the excitation wavelength, and the resulting signal is detected as the chemical separation proceeds. Variations of this original design include changing the combination of reflective and transmissive DOEs and optimizing the high numerical aperture DOE with a rotationally symmetric iterative discrete on-axis algorithm. We will discuss the results of these implemented optimizations.

More Details

Magnetic anticrossing of 1D subbands in ballistic double quantum wires

Superlattices and Microstructures

Blount, M.A.; Simmons, J.A.; Moon, J.S.; Lyo, S.K.; Wendt, J.R.; Reno, J.L.

We study the low-temperature in-plane magnetoconductance of vertically coupled double quantum wires. Using a novel flip-chip technique, the wires are defined by two pairs of mutually aligned split gates on opposite sides of a≤1 micron thick AlGaAs/GaAs double quantum well heterostructure. We observe quantized conductance steps due to each quantum well and demonstrate independent control of each 1D wire. A broad dip in the magnetoconductance at approximately 6 T is observed when a magnetic field is applied perpendicular to both the current and growth directions. This conductance dip is observed only when 1D subbands are populated in both the top and bottom constrictions. This data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands.

More Details
Results 201–271 of 271
Results 201–271 of 271