Publications

Results 51–75 of 174
Skip to search filters

Protection of extreme ultraviolet lithography masks. II. Showerhead flow mitigation of nanoscale particulate contamination

Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics

Klebanoff, Leonard E.; Torczynski, J.R.; Geller, Anthony S.; Gallis, Michael A.; Rader, Daniel J.; Chilese, Frank C.; Garcia, Rudy F.; Delgado, Gil

An analysis is presented of a method to protect the reticle (mask) in an extreme ultraviolet (EUV) mask inspection tool using a showerhead plenum to provide a continuous flow of clean gas over the surface of a reticle. The reticle is suspended in an inverted fashion (face down) within a stage/holder that moves back and forth over the showerhead plenum as the reticle is inspected. It is essential that no particles of 10-nm diameter or larger be deposited on the reticle during inspection. Particles can originate from multiple sources in the system, and mask protection from each source is explicitly analyzed. The showerhead plate has an internal plenum with a solid conical wall isolating the aperture. The upper and lower surfaces of the plate are thin flat sheets of porous-metal material. These porous sheets form the top and bottom showerheads that supply the region between the showerhead plate and the reticle and the region between the conical aperture and the Optics Zone box with continuous flows of clean gas. The model studies show that the top showerhead provides robust reticle protection from particles of 10-nm diameter or larger originating from the Reticle Zone and from plenum surfaces contaminated by exposure to the Reticle Zone. Protection is achieved with negligible effect on EUV transmission. The bottom showerhead efficiently protects the reticle from nanoscale particles originating from the Optics Zone. With similar mass flow rates from the two showerheads, this system provides efficient protection even when a significant overpressure exists between the Optics Zone and the Reticle Zone. Performance is insensitive to the fraction of incident particles that sticks to walls, the accommodation coefficient, the aperture geometry, and the gas pressure. The showerheads also protect the aperture (and therefore the Optics Zone) during mask loading and unloading. Commercially available porous-metal media have properties suitable for these showerheads at the required flow rates. The benefits of the approach compared to a conceptual EUV pellicle are described.

More Details

Efficient DSMC collision-partner selection schemes

AIP Conference Proceedings

Gallis, Michail A.; Torczynski, J.R.

The effect of collision-partner selection schemes on the accuracy and the efficiency of the Direct Simulation Monte Carlo (DSMC) method of Bird is investigated. Several schemes to reduce the total discretization error as a function of the mean collision separation and the mean collision time are examined. These include the historically first sub-cell scheme, the more recent nearest-neighbor scheme, and various near-neighbor schemes, which are evaluated for their effect on the thermal conductivity for Fourier flow. Their convergence characteristics as a function of spatial and temporal discretization and the number of simulators per cell are compared to the convergence characteristics of the sophisticated and standard DSMC algorithms. Improved performance is obtained if the population from which possible collision partners are selected is an appropriate fraction of the population of the cell. © 2011 American Institute of Physics.

More Details

DSMC moving-boundary algorithms for simulating mems geometries with opening and closing gaps

AIP Conference Proceedings

Rader, Daniel J.; Gallis, Michail A.; Torczynski, J.R.

Moving-boundary algorithms for the Direct Simulation Monte Carlo (DSMC) method are investigated for a microbeam that moves toward and away from a parallel substrate. The simpler but analogous one-dimensional situation of a piston moving between two parallel walls is investigated using two moving-boundary algorithms. In the first, molecules are reflected rigorously from the moving piston by performing the reflections in the piston frame of reference. In the second, molecules are reflected approximately from the moving piston by moving the piston and subsequently moving all molecules and reflecting them from the moving piston at its new or old position. © 2011 American Institute of Physics.

More Details
Results 51–75 of 174
Results 51–75 of 174