Basic Research Needs for Solid State Lighting: LED Science
Abstract not provided.
Abstract not provided.
This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.
Abstract not provided.
For several years now quantum computing has been viewed as a new paradigm for certain computing applications. Of particular importance to this burgeoning field is the development of an algorithm for factoring large numbers which obviously has deep implications for cryptography and national security. Implementation of these theoretical ideas faces extraordinary challenges in preparing and manipulating quantum states. The quantum transport group at Sandia has demonstrated world-leading, unique double quantum wires devices where we have unprecedented control over the coupling strength, number of 1 D channels, overlap and interaction strength in this nanoelectronic system. In this project, we study 1D-1D tunneling with the ultimate aim of preparing and detecting quantum states of the coupled wires. In a region of strong tunneling, electrons can coherently oscillate from one wire to the other. By controlling the velocity of the electrons, length of the coupling region and tunneling strength we will attempt to observe tunneling oscillations. This first step is critical for further development double quantum wires into the basic building block for a quantum computer, and indeed for other coupled nanoelectronic devices that will rely on coherent transport. If successful, this project will have important implications for nanoelectronics, quantum computing and information technology.
Proposed for publication in the Physical Review B.
Abstract not provided.
Macroscopic quantum states such as superconductors, Bose-Einstein condensates and superfluids are some of the most unusual states in nature. In this project, we proposed to design a semiconductor system with a 2D layer of electrons separated from a 2D layer of holes by a narrow (but high) barrier. Under certain conditions, the electrons would pair with the nearby holes and form excitons. At low temperature, these excitons could condense to a macroscopic quantum state either through a Bose-Einstein condensation (for weak exciton interactions) or a BCS transition to a superconductor (for strong exciton interactions). While the theoretical predictions have been around since the 1960's, experimental realization of electron-hole bilayer systems has been extremely difficult due to technical challenges. We identified four characteristics that if successfully incorporated into a device would give the best chances for excitonic condensation to be observed. These characteristics are closely spaced layers, low disorder, low density, and independent contacts to allow transport measurements. We demonstrated each of these characteristics separately, and then incorporated all of them into a single electron-hole bilayer device. The key to the sample design is using undoped GaAs/AlGaAs heterostructures processed in a field-effect transistor geometry. In such samples, the density of single 2D layers of electrons could be varied from an extremely low value of 2 x 10{sup 9} cm{sup -2} to high values of 3 x 10{sup 11} cm{sup -2}. The extreme low values of density that we achieved in single layer 2D electrons allowed us to make important contributions to the problem of the metal insulator transition in two dimensions, while at the same time provided a critical base for understanding low density 2D systems to be used in the electron-hole bilayer experiments. In this report, we describe the processing advances to fabricate single and double layer undoped samples, the low density results on single layers, and evidence for gateable undoped bilayers.
This SAND report is the final report on Sandia's Grand Challenge LDRD Project 27328, 'A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-state Lighting.' This project, which for brevity we refer to as the SSL GCLDRD, is considered one of Sandia's most successful GCLDRDs. As a result, this report reviews not only technical highlights, but also the genesis of the idea for Solid-state Lighting (SSL), the initiation of the SSL GCLDRD, and the goals, scope, success metrics, and evolution of the SSL GCLDRD over the course of its life. One way in which the SSL GCLDRD was different from other GCLDRDs was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and other Department of Energy (DOE) national laboratories - to support a national initiative in SSL R&D. Sandia was a major player in publicizing the tremendous energy savings potential of SSL, and in helping to develop, unify and support community consensus for such an initiative. Hence, our activities in this area, discussed in Chapter 6, were substantial: white papers; SSL technology workshops and roadmaps; support for the Optoelectronics Industry Development Association (OIDA), DOE and Senator Bingaman's office; extensive public relations and media activities; and a worldwide SSL community website. Many science and technology advances and breakthroughs were also enabled under this GCLDRD, resulting in: 55 publications; 124 presentations; 10 book chapters and reports; 5 U.S. patent applications including 1 already issued; and 14 patent disclosures not yet applied for. Twenty-six invited talks were given, at prestigious venues such as the American Physical Society Meeting, the Materials Research Society Meeting, the AVS International Symposium, and the Electrochemical Society Meeting. This report contains a summary of these science and technology advances and breakthroughs, with Chapters 1-5 devoted to the five technical task areas: 1 Fundamental Materials Physics; 2 111-Nitride Growth Chemistry and Substrate Physics; 3 111-Nitride MOCVD Reactor Design and In-Situ Monitoring; 4 Advanced Light-Emitting Devices; and 5 Phosphors and Encapsulants. Chapter 7 (Appendix A) contains a listing of publications, presentations, and patents. Finally, the SSL GCLDRD resulted in numerous actual and pending follow-on programs for Sandia, including multiple grants from DOE and the Defense Advanced Research Projects Agency (DARPA), and Cooperative Research and Development Agreements (CRADAs) with SSL companies. Many of these follow-on programs arose out of contacts developed through our External Advisory Committee (EAC). In h s and other ways, the EAC played a very important role. Chapter 8 (Appendix B) contains the full (unedited) text of the EAC reviews that were held periodically during the course of the project.
IEEE Transactions on Nanotechnology
We demonstrate the presence of a resonant interaction between a pair of coupled quantum wires, which are formed in the ultrahigh mobility two-dimensional electron gas of a GaAs/AlGaAs quantum well. The coupled-wire system is realized by an extension of the split-gate technique, in which bias voltages are applied to Schottky gates on the semiconductor surface, to vary the width of the two quantum wires, as well as the strength of the coupling between them. The key observation of interest here is one in which the gate voltages used to define one of the wires are first fixed, after which the conductance of this wire is measured as the gate voltage used to form the other wire is swept. Over the range of gate voltage where the swept wire pinches off, we observe a resonant peak in the conductance of the fixed wire that is correlated precisely to this pinchoff condition. In this paper, we present new results on the current- and temperature-dependence of this conductance resonance, which we suggest is related to the formation of a local moment in the swept wire as its conductance is reduced below 2e2/h.
Proposed for publication in Semiconductor Science and Technology.
We demonstrate the presence of a resonant interaction between a pair of coupled quantum wires, which are realized in the ultra-high mobility two-dimensional electron gas of a GaAs/AlGaAs quantum well. Measuring the conductance of one wire, as the width of the other is varied, we observe a resonant peak in its conductance that is correlated with the point at which the swept wire pinches off. We discuss this behavior in terms of recent theoretical predictions concerning local spin-moment formation in quantum wires.
Physical Review B - Condensed Matter and Materials Physics
The conductivity of extremely high mobility dilute two-dimensional holes in GaAs changes linearly with temperature in the insulating side of the metal-insulator transition. Hopping conduction, characterized by an exponentially decreasing conductivity with decreasing temperature, is not observed when the conductivity is smaller than e2/h. We suggest that strong interactions in a regime close to the Wigner crystallization must be playing a role in the unusual transport. © 2003 The American Physical Society.
Solid-state lighting using light-emitting diodes (LEDs) has the potential to reduce energy consumption for lighting by 50% while revolutionizing the way we illuminate our homes, work places, and public spaces. Nevertheless, substantial technical challenges remain in order for solid-state lighting to significantly displace the well-developed conventional lighting technologies. We review the potential of LED solid-state lighting to meet the long-term cost goals.
Applied Physics Letters
Nonlocal resonant interaction between coupled quantum wires was studied. A resonant peak in the conductance that was correlated to the point at which the other wire pinches off was observed by measuring the conductance of one of the wires, as width of the other was varied. A micrograph of the device structure and schematics which illustrated the different measurements was showed.
Proposed for publication in Physical Review B.
The metallic conductivity of dilute two-dimensional holes in a GaAs HIGFET (Heterojunction Insulated-Gate Field-Effect Transistor) with extremely high mobility and large r{sub s} is found to have a linear dependence on temperature, consistent with the theory of interaction corrections in the ballistic regime. Phonon scattering contributions are negligible in the temperature range of our interest, allowing comparison between our measured data and theory without any phonon subtraction. The magnitude of the Fermi liquid interaction parameter F{sub 0}{sup {sigma}} determined from the experiment, however, decreases with increasing r{sub s} for r{sub s} {approx}> 22, a behavior unexpected from existing theoretical calculations valid for small r{sub s}.
Proposed for publication in Physica E.
Abstract not provided.
Coupled double quantum well field-effect transistors with a grating gate exhibit a terahertz ({approx}600 GHz) photoconductive response that resonates with standing two dimensional plasma oscillations under the gate and may be the basis for developing a fast, tunable terahertz detector. The application of a precisely aligned in-plane magnetic field produces no detectable change in the device DC conductance but produces a dramatic inversion, growth of the terahertz photoconductive response and frequency shift of the standing plasmon resonances. The frequency shift can be described by a significant mass increase produced by the in-plane field. The mass increase is substantially larger than that calculated from a single well and we presume that a proper treatment of the coupled double quantum well may resolve this discrepancy.
The goal of this LDRD was to engineer further improvements in a novel electron tunneling device, the double electron layer tunneling transistor (DELTT). The DELTT is a three terminal quantum device, which does not require lateral depletion or lateral confinement, but rather is entirely planar in configuration. The DELTT's operation is based on 2D-2D tunneling between two parallel 2D electron layers in a semiconductor double quantum well heterostructure. The only critical dimensions reside in the growth direction, thus taking full advantage of the single atomic layer resolution of existing semiconductor growth techniques such as molecular beam epitaxy. Despite these advances, the original DELTT design suffered from a number of performance short comings that would need to be overcome for practical applications. These included (i)a peak voltage too low ({approx}20 mV) to interface with conventional electronics and to be robust against environmental noise, (ii) a low peak current density, (iii) a relatively weak dependence of the peak voltage on applied gate voltage, and (iv) an operating temperature that, while fairly high, remained below room temperature. In this LDRD we designed and demonstrated an advanced resonant tunneling transistor that incorporates structural elements both of the DELTT and of conventional double barrier resonant tunneling diodes (RTDs). Specifically, the device is similar to the DELTT in that it is based on 2D-2D tunneling and is controlled by a surface gate, yet is also similar to the RTD in that it has a double barrier structure and a third collector region. Indeed, the device may be thought of either as an RTD with a gate-controlled, fully 2D emitter, or alternatively, as a ''3-layer DELTT,'' the name we have chosen for the device. This new resonant tunneling transistor retains the original DELTT advantages of a planar geometry and sharp 2D-2D tunneling characteristics, yet also overcomes the performance shortcomings of the original DELTT design. In particular, it exhibits the high peak voltages and current densities associated with conventional RTDs, allows sensitive control of the peak voltage by the control gate, and operates nearly at room temperature. Finally, we note under this LDRD we also investigated the use of three layer DELTT structures as long wavelength (Terahertz) detectors using photon-assisted tunneling. We have recently observed a narrowband (resonant) tunable photoresponse in related structures consisting of grating-gated double quantum wells, and report on that work here as well.
Physical Review Letters
Magnetotransport in a laterally confined two-dimensional electron gas (2DEG) can exhibit modified scattering channels owing to a tilted Hall potential. Transitions of electrons between Landau levels with shifted guiding centers can be accomplished through a Zener tunneling mechanism, and make a significant contribution to the magnetoresistance. A remarkable oscillation effect in weak field magnetoresistance has been observed in high-mobility 2DEGs in [Formula presented] heterostructures, and can be well explained by the Zener mechanism. © 2002 The American Physical Society.
Physical Review Letters
A new class of magneto-oscillations in a high-density 2DEG was obtained and interpreted as the magnetophonon resonance with leaky interface-acoustic phonons. It was shown that owing to their 2D characteristics, the leaky interface modes play a key role in the scattering of 2D electrons in GaAs-AlGa-As heterostructures and quantum wells.
Applied Physics Letters
In-plane magnetic-field photoluminescence spectra from a series of n-type modulation-doped GaAs/Al0.3Ga0.7As coupled double quantum wells show distinctive doublet structures related to the tunnel-split ground sublevel states. The magnetic-field behavior of the upper transition from the antisymmetric state strongly depends on sample mobility. In a lower mobility sample, the transition energy displays an N-type kink with field (namely, a maximum followed by a minimum), whereas higher mobility samples have a linear dependence. The former is attributed to a coupling mechanism due to homogeneous broadening of the electron and hole states. The results are in good agreement with recent theoretical calculations. © 2000 American Institute of Physics.
Science Magazine
A novel planar resonant tunneling transistor is demonstrated. The growth structure is similar to that of a double-barrier resonant tunneling diode (RTD), except for a fully two-dimensional (2D) emitter formed by a quantum well. Current is fed laterally into the emitter, and the 2D--2D resonant tunneling current is controlled by a surface gate. This unique device structure achieves figures-of-merit, i.e. peak current densities and peak voltages, approaching that of state-of-the-art RTDs. Most importantly, sensitive control of the peak current and voltage is achieved by gating of the emitter quantum well subband energy. This quantum tunneling transistor shows exceptional promise for ultra-high speed and multifunctional operation at room temperature.
Physica E
The authors report on their recent experimental studies of vertically-coupled quantum point contacts subject to in-plane magnetic fields. Using a novel flip-chip technique, mutually aligned split gates on both sides of a sub micron thick double quantum well heterostructure define a closely-coupled pair of ballistic one-dimensional (1D) constrictions. They observe quantized conductance steps due to each quantum well and demonstrate independent control of each ID constriction width. In addition, a novel magnetoconductance feature at {approximately}6 T is observed when a magnetic field is applied perpendicular to both the current and growth directions. This conductance dip is observed only when 1D subbands are populated in both the top and bottom constrictions. This data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands.
JETP Letters
The effect of the nuclear hyperfine interaction on the dc conductivity of 2D electrons under quantum Hall effect conditions at filling factor v= 1 is observed for the first time. The local hyperfine field enhanced by dynamic nuclear polarization is monitored via the Overhauser shift of the 2D conduction electron spin resonance in AlGaAs/GaAs multiquantum-well samples. The experimentally observed change in the dc conductivity resulting from dynamic nuclear polarization is in agreement with a thermal activation model incorporating the Zeeman energy change due to the hyperfine interaction. The relaxation decay time of the dc conductivity is, within experimental error, the same as the relaxation time of the nuclear spin polarization determined from the Overhauser shift. These findings unequivocally establish the nuclear spin origins of the observed conductivity change.
Physical Review B
Polarized magneto-photoluminescence (MPL) measurements on a high mobility {delta}-doped GaAs/AlGaAs single quantum well from 0--60 T at temperatures between 0.37--2.1 K are reported. In addition to the neutral heavy hole magneto-exciton (X{sup 0}), the singlet (X {sub s}{sup {minus}}) and triplet (X {sub t}{sup {minus}}) states of the negatively charged magneto-exciton are observed in both polarizations. The energy dispersive and time-resolved MPL data suggest that their development is fundamentally related to the formation of the neutral magneto-exciton. At a magnetic field of 40 T the singlet and the triplet states cross as a result of the role played by the higher Landau levels and higher energy subbands in their energetic evolution, confirming theoretical predictions. The authors also observed the formation of two higher energy peaks. One of them is completely right circularly polarized and its appearance can be considered a result of the electron-hole exchange interaction enhancement with an associated electron g-factor of 3.7 times the bulk value. The other peak completely dominates the MPL spectrum at fields around 30 T. Its behavior with magnetic field and temperature indicates that it may be related to previous anomalies observed in the integer and fractional quantum Hall regimes.
Superlattices and Microstructures
We study the low-temperature in-plane magnetoconductance of vertically coupled double quantum wires. Using a novel flip-chip technique, the wires are defined by two pairs of mutually aligned split gates on opposite sides of a≤1 micron thick AlGaAs/GaAs double quantum well heterostructure. We observe quantized conductance steps due to each quantum well and demonstrate independent control of each 1D wire. A broad dip in the magnetoconductance at approximately 6 T is observed when a magnetic field is applied perpendicular to both the current and growth directions. This conductance dip is observed only when 1D subbands are populated in both the top and bottom constrictions. This data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands.