Publications

Results 251–300 of 326
Skip to search filters

Investigations of the non-linear transient response of quantum point contacts using pulsed excitation with sub-nanosecond time resolution

Physica E: Low-Dimensional Systems and Nanostructures

Naser, B.; Ferry, D.K.; Heeren, J.; Reno, J.L.; Bird, J.P.

We review recent work where we have investigated the non-linear transient response of quantum point contacts (QPCs) using pulsed excitation with sub-nanosecond time resolution. The transient response of these devices is shown to be dominated by a large parallel capacitance that is independent of the QPC conductance and pulse amplitude. These characteristics lead us to suggest that the capacitance is associated with charging of the two-dimensional reservoirs that source and sink current to the QPC. Our investigations also show that the transient conductance of the QPC must develop very quickly as the voltage pulse is applied, at least on a time scale shorter than the fastest rise time (2 ns) used in the experiments. We also find the existence of a characteristic fixed point in the non-linear conductance, at which its value is bias independent. The fixed point appears to correspond to the situation where the unbiased QPC is almost depopulated and can be accounted for by considering the unidirectional population of QPC subbands by the voltage bias. To discuss the behavior of the transient conductance away from the fixed point, we find that it should be necessary to consider the influence of the applied bias on the QPC profile and electron-phonon scattering. © 2007 Elsevier B.V. All rights reserved.

More Details

Terahertz detectors for long wavelength multi-spectral imaging

Shaner, Eric A.; Lyo, S.K.; Reno, J.L.; Wanke, Michael W.

The purpose of this work was to develop a wavelength tunable detector for Terahertz spectroscopy and imaging. Our approach was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays. When this work began, grating-gate gate detectors, while having many promising characteristics, had a noise-equivalent power (NEP) of only 10{sup -5} W/{radical}Hz. Over the duration of this project, we have obtained a true NEP of 10{sup -8} W/{radical}Hz and a scaled NEP of 10{sup -9}W/{radical}Hz. The ultimate goal for these detectors is to reach a NEP in the 10{sup -9{yields}-10}W/{radical}Hz range; we have not yet seen a roadblock to continued improvement.

More Details

Operation of a monolithic planar schottky receiver using a THz quantum cascade laser

IRMMW-THz2007 - Conference Digest of the Joint 32nd International Conference on Infrared and Millimetre Waves, and 15th International Conference on Terahertz Electronics

Wanke, Michael W.; Lee, Mark L.; Grine, Albert D.; Reno, J.L.; Siegel, Peter H.; Dengler, Robert J.

This paper presents heterodyne mixer measurements at 2.9 THz using quantum cascade lasers (QCLs) as sources. The linewidth of the laser was explored by biasing it to run in dual mode operation and observing the linewidth of the beat note. In addition the frequency of the QCL is determined by beating it against a deuterated methanol line from a molecular gas laser.

More Details

Microwave to millimeter-wave electrodynamic response and applications of semiconductor nanostructures: LDRD project 67025 final report

Shaner, Eric A.; Highstrete, Clark H.; Reno, J.L.; Wanke, Michael W.

Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

More Details

Tunable THz detector based on a grating gated field-effect transistor

Proceedings of SPIE - The International Society for Optical Engineering

Shaner, Eric A.; Lee, Mark L.; Wanke, M.C.; Grine, A.D.; Reno, J.L.; Allen, S.J.

A split-grating-gate detector design has been implemented in an effort to combine the tunabiliry of the basic gratinggate detector with the high responsivity observed in these detectors when approaching the pinchoff regime. The redesign of the gates by itself offers several orders of magnitude improvement in resonant responsivity. Further improvements are gained by placing the detector element on a thermally isolating membrane in order to increase the effects of lattice heating on the device response.

More Details

LDRD final report on quantum computing using interacting semiconductor quantum wires

Bielejec, Edward S.; Lilly, Michael L.; Seamons, J.A.; Dunn, Roberto G.; Lyo, S.K.; Reno, J.L.; Stephenson, Larry L.; Simmons, J.A.

For several years now quantum computing has been viewed as a new paradigm for certain computing applications. Of particular importance to this burgeoning field is the development of an algorithm for factoring large numbers which obviously has deep implications for cryptography and national security. Implementation of these theoretical ideas faces extraordinary challenges in preparing and manipulating quantum states. The quantum transport group at Sandia has demonstrated world-leading, unique double quantum wires devices where we have unprecedented control over the coupling strength, number of 1 D channels, overlap and interaction strength in this nanoelectronic system. In this project, we study 1D-1D tunneling with the ultimate aim of preparing and detecting quantum states of the coupled wires. In a region of strong tunneling, electrons can coherently oscillate from one wire to the other. By controlling the velocity of the electrons, length of the coupling region and tunneling strength we will attempt to observe tunneling oscillations. This first step is critical for further development double quantum wires into the basic building block for a quantum computer, and indeed for other coupled nanoelectronic devices that will rely on coherent transport. If successful, this project will have important implications for nanoelectronics, quantum computing and information technology.

More Details

1D-1D tunneling between vertically coupled GaAs/AlGaAs quantum wires

AIP Conference Proceedings

Bielejec, E.; Seamons, J.A.; Lilly, M.P.; Reno, J.L.

We report low-dimensional transport and tunneling in an independently contacted vertically coupled quantum wire system, with a 7.5 nm barrier between the wires. The derivative of the linear conductance shows evidence for both single wire occupation and coupling between the wires. This provides a map of the subband occupation that illustrates the control that we have over the vertically coupled double quantum wires. Preliminary tunneling results indicate a sharp 1D-1D peak in conjunction with a broad 2D-2D background signal. This 1D-1D peak is sensitively dependent on the top and bottom split gate voltage. © 2005 American Institute of Physics.

More Details

Weak localization of dilute 2D electrons in undoped GaAs heterostructures

AIP Conference Proceedings

Lilly, M.P.; Bielejec, E.; Seamons, J.A.; Reno, J.L.

The temperature dependence of the resistivity and magnetoresistance of dilute 2D electrons are reported. The temperature dependence of the resistivity can be qualitatively described through phonon and ionized impurity scattering. While the temperature dependence indicates no ln(T) increase in the resistance, a sharp negative magnetoresistance feature is observed at small magnetic fields. This is shown to arise from weak localization. At very low density, we believe weak localization is still present, but cannot separate it from other effects that cause magnetoresistance in the semi-classical regime. © 2005 American Institute of Physics.

More Details

Ballistic to diffuse crossover in long quantum wires

AIP Conference Proceedings

Seamons, J.A.; Bielejec, E.; Lilly, M.P.; Reno, J.L.; Du, R.R.

We report a study on the uniformity of long quantum wires in the crossover from ballistic to diffuse transport with lengths ranging from 1 μm to 20 μm. For the 1 μm wire we measure 15 plateaus quantized at integer values of 2e2/h. With increasing length we observe plateaus at conductance values suppressed below the quantized values. With nonlinear fitting to the magnetoresistances we obtain an effective width for the quantum wires. As we find no systematic variation of the effective width as a function of sublevel index for the various length wires, we conclude that we have uniform long single quantum wires up to 20 μm. © 2005 American Institute of Physics.

More Details

Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer

Applied Physics Letters

Gao, J.R.; Hovenier, J.N.; Yang, Z.Q.; Baselmans, J.J.A.; Baryshev, A.; Hajenius, M.; Klapwijk, T.M.; Adam, A.J.L.; Klaassen, T.O.; Williams, B.S.; Kumar, S.; Hu, Q.; Reno, J.L.

We report the first demonstration of an all solid-state heterodyne receiver that can be used for high-resolution spectroscopy above 2 THz suitable for space-based observatories. The receiver uses a NbN superconducting hot-electron bolometer as mixer and a quantum cascade laser operating at 2.8 THz as local oscillator. We measure a double sideband receiver noise temperature of 1400 K at 2.8 THz and 4.2 K, and find that the free-running QCL has sufficient power stability for a practical receiver, demonstrating an unprecedented combination of sensitivity and stability. © 2005 American Institute of Physics.

More Details

Single-quantum-well grating-gated terahertz plasmon detectors

Proposed for publication in Applied Physics Letters.

Shaner, Eric A.; Lee, Mark L.; Wanke, Michael W.; Grine, Albert D.; Reno, J.L.

A grating-gated field-effect transistor fabricated from a single-quantum well in a high-mobility GaAs-AlGaAs heterostructure is shown to function as a continuously electrically tunable photodetector of terahertz radiation via excitation of resonant plasmon modes in the well. Different harmonics of the plasmon wave vector are mapped, showing different branches of the dispersion relation. As a function of temperature, the resonant response magnitude peaks at around 30 K. Both photovoltaic and photoconductive responses have been observed under different incident power and bias conditions.

More Details

Distributed-feedback terahertz quantum-cascade lasers using laterally corrugated metal waveguides

Proposed for publication in Optics Letters.

Reno, J.L.

We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.

More Details

Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode

Proposed for publication in Optics Express.

Reno, J.L.

We report the demonstration of a terahertz quantum-cascade laser that operates up to 164 K in pulsed mode and 117 K in continuous-wave mode at approximately 3.0 THz. The active region was based on a resonant-phonon depopulation scheme and a metal-metal waveguide was used for modal confinement. Copper to copper thermocompression wafer bonding was used to fabricate the waveguide, which displayed improved thermal properties compared to a previous indium-gold bonding method.

More Details

Frequency and phaselock control of a 3 THz quantum cascade laser

Proposed for publication in Optics Letters.

Reno, J.L.

We have locked the frequency of a 3 THz quantum cascade laser (QCL) to that of a far-infrared gas laser with a tunable microwave offset frequency. The locked QCL line shape is essentially Gaussian, with linewidths of 65 and 141 kHz at the -3 and -10 dB levels, respectively. The lock condition can be maintained indefinitely, without requiring temperature or bias current regulation of the QCL other than that provided by the lock error signal. The result demonstrates that a terahertz QCL can be frequency controlled with 1-part-in-108 accuracy, which is a factor of 100 better than that needed for a local oscillator in a heterodyne receiver for atmospheric and astronomic spectroscopy.

More Details

Terahertz quantum cascade lasers with metal-metal waveguides

Reno, J.L.

Quantum cascade lasers that operate in the underdeveloped terahertz spectral range (1-10 THz) promise to contribute to applications in sensing, spectroscopy, and imaging. We describe our development of terahertz quantum cascade lasers based on the resonant-phonon depopulation concept and that use low-loss metal-metal waveguides for optical confinement. Two- and three-dimensional finite-element simulations of terahertz metal-metal waveguides are used to demonstrate their high modal confinement even for very narrow ridges. Also, simulations predict high facet reflectivities due to the modal impedance mismatch with free space at the sub-wavelength waveguide aperture of these metal-metal waveguides. Finally, we report the demonstration of a 2.8 THz laser that operates up to 97 K in continuous-wave mode fabricated using a Cu-Cu thermocompression bonding technique.

More Details

Investigation of the spontaneous lateral modulation in short-period superlattices by grazing-incidence x-ray diffraction

Proposed for publication in Physical Review B.

Reno, J.L.

The process of spontaneous lateral composition modulation in short-period InAs/AlAs superlattices has been investigated by grazing-incidence x-ray diffraction. We have developed a theoretical description of x-ray scattering from laterally modulated structures that makes it possible to determine the lateral composition modulation directly without assuming any structure model. From experimental intensity distributions in reciprocal space we have determined the amplitudes of the modulation and its degree of periodicity and their dependence on the number of superlattice periods. From the data it follows that the modulation process cannot be explained by bunching of monolayer steps and most likely, it is caused by stress-driven morphological instabilities of the growing surface.

More Details

LDRD final report on continuous wave intersubband terahertz sources

Wanke, Michael W.; Foltynowicz, Robert J.; Young, Erik W.; Mangan, Michael M.; Fuller, Charles T.; Reno, J.L.; Stephenson, Larry L.; Hudgens, James J.

There is a general lack of compact electromagnetic radiation sources between 1 and 10 terahertz (THz). This a challenging spectral region lying between optical devices at high frequencies and electronic devices at low frequencies. While technologically very underdeveloped the THz region has the promise to be of significant technological importance, yet demonstrating its relevance has proven difficult due to the immaturity of the area. While the last decade has seen much experimental work in ultra-short pulsed terahertz sources, many applications will require continuous wave (cw) sources, which are just beginning to demonstrate adequate performance for application use. In this project, we proposed examination of two potential THz sources based on intersubband semiconductor transitions, which were as yet unproven. In particular we wished to explore quantum cascade lasers based sources and electronic based harmonic generators. Shortly after the beginning of the project, we shifted our emphasis to the quantum cascade lasers due to two events; the publication of the first THz quantum cascade laser by another group thereby proving feasibility, and the temporary shut down of the UC Santa Barbara free-electron lasers which were to be used as the pump source for the harmonic generation. The development efforts focused on two separate cascade laser thrusts. The ultimate goal of the first thrust was for a quantum cascade laser to simultaneously emit two mid-infrared frequencies differing by a few THz and to use these to pump a non-linear optical material to generate THz radiation via parametric interactions in a specifically engineered intersubband transition. While the final goal was not realized by the end of the project, many of the completed steps leading to the goal will be described in the report. The second thrust was to develop direct THz QC lasers operating at terahertz frequencies. This is simpler than a mixing approach, and has now been demonstrated by a few groups with wavelengths spanning 65-150 microns. We developed and refined the MBE growth for THz for both internally and externally designed QC lasers. Processing related issues continued to plague many of our demonstration efforts and will also be addressed in this report.

More Details

LDRD final report on engineered superconductivity in electron-hole bilayers

Lilly, Michael L.; Bielejec, Edward S.; Seamons, J.A.; Dunn, Roberto G.; Lyo, S.K.; Reno, J.L.; Stephenson, Larry L.; Baca, Wes E.; Simmons, J.A.

Macroscopic quantum states such as superconductors, Bose-Einstein condensates and superfluids are some of the most unusual states in nature. In this project, we proposed to design a semiconductor system with a 2D layer of electrons separated from a 2D layer of holes by a narrow (but high) barrier. Under certain conditions, the electrons would pair with the nearby holes and form excitons. At low temperature, these excitons could condense to a macroscopic quantum state either through a Bose-Einstein condensation (for weak exciton interactions) or a BCS transition to a superconductor (for strong exciton interactions). While the theoretical predictions have been around since the 1960's, experimental realization of electron-hole bilayer systems has been extremely difficult due to technical challenges. We identified four characteristics that if successfully incorporated into a device would give the best chances for excitonic condensation to be observed. These characteristics are closely spaced layers, low disorder, low density, and independent contacts to allow transport measurements. We demonstrated each of these characteristics separately, and then incorporated all of them into a single electron-hole bilayer device. The key to the sample design is using undoped GaAs/AlGaAs heterostructures processed in a field-effect transistor geometry. In such samples, the density of single 2D layers of electrons could be varied from an extremely low value of 2 x 10{sup 9} cm{sup -2} to high values of 3 x 10{sup 11} cm{sup -2}. The extreme low values of density that we achieved in single layer 2D electrons allowed us to make important contributions to the problem of the metal insulator transition in two dimensions, while at the same time provided a critical base for understanding low density 2D systems to be used in the electron-hole bilayer experiments. In this report, we describe the processing advances to fabricate single and double layer undoped samples, the low density results on single layers, and evidence for gateable undoped bilayers.

More Details

Voltage tunable two-color superlattice infrared photodetectors

Proceedings of SPIE - The International Society for Optical Engineering

Majumdar, Amlan; Choi, K.K.; Reno, J.L.; Tsui, D.C.

We present the design and fabrication of voltage tunable two-color superlattice infrared photodetectors (SLIPs), where the detection wavelength switches from the long-wavelength infrared (LWIR) range to the mid-wavelength infrared (MWIR) range upon reversing the polarity of applied bias. The photoactive region of these detectors contains multiple periods of two distinct short-period SLs that are designed for MWIR and LWIR detection. The voltage tunable operation is achieved by using two types of thick blocking barriers between adjacent SLs - undoped barriers on one side for low energy electrons and heavily-doped layers on the other side for high energy electrons. We grew two SLIP structures by molecular beam epitaxy. The first one consists of two AlGaAs/GaAs SLs with the detection range switching from the 7-11 μm band to the 4-7 μm range on reversing the bias polarity. The background-limited temperature is 55 and 80 K for LWIR and MWIR detection, respectively. The second structure comprises of strained InGaAs/GaAs/AlGaAs SLs and AlGaAs/GaAs SLs. The detection range of this SLIP changes from the 8-12 μm band to the 3-5 μm band on switching the bias polarity. The background-limited temperature is 70 and 110 K for LWIR and MWIR detection, respectively. This SLIP is the first ever voltage tunable MWIR/LWIR detector with performance comparable to those of one-color quantum-well infrared detectors designed for the respective wavelength ranges. We also demonstrate that the corrugated light coupling scheme, which enables normal-incidence absorption, is suitable for the two-color SLIPs. Since these SLIPs are two-terminal devices, they can be used with the corrugated geometry for the production of low-cost large-area two-color focal plane arrays.

More Details

Tunneling and nonlinear transport in a vertically coupled GaAs/AlGaAs double quantum wire system

Proposed for publication in Applied Physics Letters.

Bielejec, Edward S.; Seamons, J.A.; Reno, J.L.; Lilly, Michael L.

We report low-dimensional tunneling in an independently contacted vertically coupled quantum wire system. This nanostructure is fabricated in a high quality GaAs/AlGaAs parallel double quantum well heterostructure. Using a unique flip chip technique to align top and bottom split gates to form low-dimensional constrictions in each of the independently contacted quantum wells we explicitly control the subband occupation of the individual wires. In addition to the expected two-dimensional (2D)-2D tunneling results, we have found additional tunneling features that are related to the one-dimensional quantum wires.

More Details

Binary superlattice quantum-well infrared photodetectors for long-wavelength broadband detection

Applied Physics Letters

Ellis, A.R.; Majumdar, Amlan; Choi, K.K.; Reno, J.L.; Tsui, D.C.

A long-wavelength broadband quantum-well infrared photodetectors (QWIP) were analyzed using a superlattices (SL) with a binary basis. The binary SL (BSL) structure offered greater flexibility in spectral coverage and line shape. The energy levels and wave functions of one period of the BSL structure were calculated using the transfer matrix method. The photoresponse spectra from both wafers were found to be unchanged over a wide range of operating bias and temperature.

More Details

Resonant-phonon-assisted THz quantum cascade lasers with metal-metal waveguides

Proposed for publication in Semiconductor Science and Technology.

Reno, J.L.

We report our development of terahertz (THz) quantum-cascade lasers (QCLs) based on two novel features. First, the depopulation of the lower radiative level is achieved through resonant longitudinal optical (LO-)phonon scattering. This depopulation mechanism is robust at high temperatures and high injection levels. In contrast to infrared QCLs that also use LO-phonon scattering for depopulation, in our THz lasers the selectivity of the depopulation scattering is achieved through a combination of resonant tunneling and LO-phonon scattering, hence the term resonant phonon. This resonant-phonon scheme allows a highly selective depopulation of the lower radiative level with a sub-picosecond lifetime, while maintaining a relatively long upper level lifetime (>5 ps) that is due to upper-to-ground-state scattering. The second feature of our lasers is that mode confinement is achieved by using a novel double-sided metal-metal waveguide, which yields an essentially unity mode confinement factor and therefore a low total cavity loss at THz frequencies. Based on these two unique features, we have achieved some record performance, including, but not limited to, the highest pulsed operating temperature of 137 K, the highest continuous-wave operating temperature of 97 K, and the longest wavelength of 141 {micro}m (corresponding to 2.1 THz) without the assistance of a magnetic field.

More Details

Novel Many-Body Transport Phenomenon in Coupled Quantum Wires

IEEE Transactions on Nanotechnology

Sasaki, Takahiko; Morimoto, Takahiro; Iwase, Yoshikazu; Aoki, Nobuyuki; Ochiai, Yuichi; Shailos, Alexandros; Bird, Jonathan P.; Lilly, Michael L.; Reno, J.L.; Simmons, J.A.

We demonstrate the presence of a resonant interaction between a pair of coupled quantum wires, which are formed in the ultrahigh mobility two-dimensional electron gas of a GaAs/AlGaAs quantum well. The coupled-wire system is realized by an extension of the split-gate technique, in which bias voltages are applied to Schottky gates on the semiconductor surface, to vary the width of the two quantum wires, as well as the strength of the coupling between them. The key observation of interest here is one in which the gate voltages used to define one of the wires are first fixed, after which the conductance of this wire is measured as the gate voltage used to form the other wire is swept. Over the range of gate voltage where the swept wire pinches off, we observe a resonant peak in the conductance of the fixed wire that is correlated precisely to this pinchoff condition. In this paper, we present new results on the current- and temperature-dependence of this conductance resonance, which we suggest is related to the formation of a local moment in the swept wire as its conductance is reduced below 2e2/h.

More Details
Results 251–300 of 326
Results 251–300 of 326