Quantum Electronic Phenomena and Structures (invited talk)
Abstract not provided.
Abstract not provided.
Most spin qubit research to date has focused on manipulating single electron spins in quantum dots. However, hole spins are predicted to have some advantages over electron spins, such as reduced coupling to host semiconductor nuclear spins and the ability to control hole spins electrically using the large spin-orbit interaction. Building on recent advances in fabricating high-mobility 2D hole systems in GaAs/AlGaAs heterostructures at Sandia, we fabricate and characterize single hole transistors in GaAs. We demonstrate p-type double quantum dot devices with few-hole occupation, which could be used to study the physics of individual hole spins and control over coupling between hole spins, looking towards eventual applications in quantum computing. Intentionally left blank
Applied Physics Letters
In this study, we observe dipole resonances in thin conductive carbon micro-fibers by detecting an enhanced electric field in the near-field of a single fiber at terahertz (THz) frequencies. Time-domain analysis of the electric field shows that each fiber sustains resonant current oscillations at the frequency defined by the fiber's length. Strong dependence of the observed resonance frequency and degree of field enhancement on the fibers' conductive properties enable direct non-contact probing of the THz conductivity in single carbon micro-fibers. We find the conductivity of the fibers to be within the range of 1– 5∙104 S/m. This approach is suitable for experimental characterization of individual doped semiconductor resonators for THz metamaterials and devices.
Optics Express
Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (∼450 mW/A) in pulsed mode for DFB lasers at 4 THz and a ∼4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements.
Japanese Journal of Applied Physics
The aluminum concentration dependence of the energies of the direct and indirect bandgaps arising from the Γ and Χ conduction bands are measured at 1.7K in the semiconductor alloy AlxGa1-xAs. The composition at which the bands cross is determined from photoluminescence of samples grown by molecular-beam epitaxy very close to crossover at x ≈ 0.4. The use of resonant laser excitation and the improved sample linewidth allows excitation intensities as low as 10-2 W/cm2, giving a precise determination of the bound exciton transition energies and their Γ and Χ crossover. Photoluminescence excitation spectroscopy is then used to measure the binding energies of the donor-bound excitons and the Γ free exciton binding energy. After correcting for the Γ- and Χ-dependence of these quantities, the crossover of the bandgap is determined to be at x = 0.401 and E = 2.086 eV.
Abstract not provided.
Abstract not provided.
Optics Express
Abstract not provided.
Physical Review B - Condensed Matter and Materials Physics
A combined experimental-theoretical study of optically pumped nuclear magnetic resonance (OPNMR) has been performed in a GaAs/Al0.1Ga0.9As quantum well film epoxy bonded to a Si substrate with thermally induced biaxial strain. The photon energy dependence of the Ga OPNMR signal was recorded at magnetic fields of 4.9 and 9.4 T at a temperature of 4.8-5.4 K. The data were compared to the nuclear spin polarization calculated from the electronic structure and differential absorption to spin-up and spin-down states of the electron conduction band using a modified k·p model based on the Pidgeon-Brown model. Comparison of theory with experiment facilitated the assignment of features in the OPNMR energy dependence to specific interband Landau level transitions. The results provide insight into how effects of strain and quantum confinement are manifested in optical nuclear polarization in semiconductors.
Journal of Chemical Physics
The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 1011 cm-2 was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent "rephasing" (S1) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S1 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The "two-quantum coherence" (S3) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.
Abstract not provided.
Abstract not provided.
Review of Scientific Instruments
We report the design, construction, and characterization of a biaxial sample rotation stage for use in a cryogenic system for orientation-dependent studies of anisotropic electronic transport phenomena at low temperatures and high magnetic fields. Our apparatus allows for continuous rotation of a sample about two axes, both independently and simultaneously.
Physical Review Letters
Abstract not provided.
Abstract not provided.
Physical Review B
Abstract not provided.
Applied Physics Letters
We demonstrate a hole double quantum dot in an undoped GaAs/AlGaAs heterostructure. The interdot coupling can be tuned over a wide range, from formation of a large single dot to two well-isolated quantum dots. Using charge sensing, we show the ability to completely empty the dot of holes and control the charge occupation in the few-hole regime. The device should allow for control of individual hole spins in single and double quantum dots in GaAs. © 2014 AIP Publishing LLC.
Optics InfoBase Conference Papers
We demonstrate that THz pulses transmitted through small apertures (~λ/100) exhibit strong evanescent components within 1μm of the aperture. Using this effect, we developed subwavelength aperture THz near-field probes that provide 3μm resolution. © 2014 OSA.
Proceedings of SPIE - The International Society for Optical Engineering
Achieving high spatial resolutions for imaging with terahertz (THz) waves requires near-field probes, such as a sub-wavelength aperture probe. Bethe's theory of transmission through a sub-wavelength aperture of size a predicts that the transmitted electric field scales as Eαa3. This strong dependence limits the size of apertures that can be employed and hence the spatial resolution. This dependence however changes for the evanescent field components in very close proximity (∼1μm for THz waves) to the aperture, as shown by electromagnetic simulations. To exploit this effect in a THz near-field probe, we developed a photoconductive THz near-field detector structure, which incorporates a thinned photo-conductive detector region and a distributed Bragg reflector between the detector and the aperture plane. Near-field probes are manufactured with different aperture sizes to investigate transmission of THz pulses through apertures as small as 3μm. The experimental results confirm that the transmitted field amplitude, and therefore the sensitivity, increases by about one order of magnitude for the new probes. A 3μm aperture probe with a spatial resolution of λ/100 at 1THz is demonstrated.. © 2014 SPIE.
Optics Letters
Abstract not provided.
Science
One-dimensional (1D) interacting electronic systems exhibit distinct properties when compared to their counterparts in higher dimensions. We report Coulomb drag measurements between vertically integrated quantum wires separated by a barrier only 15 nanometers wide. The temperature dependence of the drag resistance is measured in the true 1D regime where both wires have less than one 1D subband occupied. As a function of temperature, an upturn in the drag resistance is observed below a temperature T*∼ 1.6 kelvin. This crossover in Coulomb drag behavior is consistent with Tomonaga-Luttinger liquid models for the 1D-1D drag between quantum wires.
Applied Physics Letters
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Nano Letters
Abstract not provided.
Nature
Abstract not provided.