Transient GaAs Plasmonic Metasurfaces at Terahertz Frequencies
Abstract not provided.
Abstract not provided.
Advanced Optical Materials
Abstract not provided.
Nano Letters
Nonlinear optical phenomena in nanostructured materials have been challenging our perceptions of nonlinear optical processes that have been explored since the invention of lasers. For example, the ability to control optical field confinement, enhancement, and scattering almost independently allows nonlinear frequency conversion efficiencies to be enhanced by many orders of magnitude compared to bulk materials. Also, the subwavelength length scale renders phase matching issues irrelevant. Compared with plasmonic nanostructures, dielectric resonator metamaterials show great promise for enhanced nonlinear optical processes due to their larger mode volumes. Here, we present, for the first time, resonantly enhanced second-harmonic generation (SHG) using gallium arsenide (GaAs) based dielectric metasurfaces. Using arrays of cylindrical resonators we observe SHG enhancement factors as large as 104 relative to unpatterned GaAs. At the magnetic dipole resonance, we measure an absolute nonlinear conversion efficiency of ∼2 × 10-5 with ∼3.4 GW/cm2 pump intensity. The polarization properties of the SHG reveal that both bulk and surface nonlinearities play important roles in the observed nonlinear process.
Scientific Reports
Terahertz quantum cascade lasers (QCLs) with a broadband gain medium could play an important role for sensing and spectroscopy since then distributed-feedback schemes could be utilized to produce laser arrays on a single semiconductor chip with wide spectral coverage. QCLs can be designed to emit at two different frequencies when biased with opposing electrical polarities. Here, terahertz QCLs with bidirectional operation are developed to achieve broadband lasing from the same semiconductor chip. A three-well design scheme with shallow-well GaAs/Al 0.10 Ga 0.90 As superlattices is developed to achieve high-temperature operation for bidirectional QCLs. It is shown that shallow-well heterostructures lead to optimal quantum-transport in the superlattice for bidirectional operation compared to the prevalent GaAs/Al 0.15 Ga 0.85 As material system. Broadband lasing in the frequency range of 3.1-3.7 THz is demonstrated for one QCL design, which achieves maximum operating temperatures of 147 K and 128 K respectively in opposing polarities. Dual-color lasing with large frequency separation is demonstrated for a second QCL, that emits at ∼3.7 THz and operates up to 121 K in one polarity, and at ∼2.7 THz up to 105 K in the opposing polarity. These are the highest operating temperatures achieved for broadband terahertz QCLs at the respective emission frequencies, and could lead to commercial development of broadband terahertz laser arrays.
Applied Physics Letters
The mechanisms that limit the temperature performance of GaAs/Al0.15GaAs-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated LO-phonon scattering and leakage of charge carriers into the continuum. Consequently, the combination of highly diagonal optical transition and higher barriers should significantly reduce the adverse effects of both mechanisms and lead to improved temperature performance. Here, we study the temperature performance of highly diagonal THz-QCLs with high barriers. Our analysis uncovers an additional leakage channel which is the thermal excitation of carriers into bounded higher energy levels, rather than the escape into the continuum. Based on this understanding, we have designed a structure with an increased intersubband spacing between the upper lasing level and excited states in a highly diagonal THz-QCL, which exhibits negative differential resistance even at room temperature. This result is a strong evidence for the effective suppression of the aforementioned leakage channel.
Nature Photonics
Phase locking of an array of lasers is a highly effective method in beam shaping because it increases the output power and reduces the lasing threshold. Here, we show a conceptually novel phase-locking mechanism based on 'antenna mutual coupling' in which laser elements interact through far-field radiations with definite phase relations. This allows a long-range global coupling among the array elements to achieve a robust phase locking in two-dimensional laser arrays. The scheme is ideal for lasers with a deep subwavelength confined cavity, such as nanolasers, whose divergent beam patterns could be used to achieve a strong coupling among the elements in the array. We demonstrated experimentally such a scheme based on subwavelength short-cavity surface-emitting lasers at terahertz frequencies. More than 37 laser elements that span over ∼8 λo were phase locked to each other, and delivered up to 6.5 mW (in a pulsed operation) single-mode radiation at ∼3 THz, with a maximum 450 mW A -1 slope efficiency and a near-diffraction-limited beam divergence.
Optica
Plasmonic lasers (spasers) generate coherent surface plasmon polaritons (SPPs) and could be realized at subwavelength dimensions in metallic cavities for applications in nanoscale optics. Plasmonic cavities are also utilized for terahertz quantum-cascade lasers (QCLs), which are the brightest available solid-state sources of terahertz radiation. A long standing challenge for spasers that are utilized as nanoscale sources of radiation, is their poor coupling to the far-field radiation. Unlike conventional lasers that could produce directional beams, spasers have highly divergent radiation patterns due to their subwavelength apertures. Here, we theoretically and experimentally demonstrate a new technique for implementing distributed feedback (DFB) that is distinct from any other previously utilized DFB schemes for semiconductor lasers. The so-termed antenna-feedback scheme leads to single-mode operation in plasmonic lasers, couples the resonant SPP mode to a highly directional far-field radiation pattern, and integrates hybrid SPPs in surrounding medium into the operation of the DFB lasers. Experimentally, the antenna-feedback method, which does not require the phase matching to a well-defined effective index, is implemented for terahertz QCLs, and single-mode terahertz QCLs with a beam divergence as small as 4° × 4° are demonstrated, which is the narrowest beam reported for any terahertz QCL to date. Moreover, in contrast to a negligible radiative field in conventional photonic band-edge lasers, in which the periodicity follows the integer multiple of half-wavelengths inside the active medium, antennafeedback breaks this integer limit for the first time and enhances the radiative field of the lasing mode. Terahertz lasers with narrow-beam emission will find applications for integrated as well as standoff terahertz spectroscopy and sensing. The antenna-feedback scheme is generally applicable to any plasmonic laser with a Fabry-Perot cavity irrespective of its operating wavelength and could bring plasmonic lasers closer to practical applications.
Optica
Plasmonic lasers (spasers) generate coherent surface plasmon polaritons (SPPs) and could be realized at subwavelength dimensions in metallic cavities for applications in nanoscale optics. Plasmonic cavities are also utilized for terahertz quantum-cascade lasers (QCLs), which are the brightest available solid-state sources of terahertz radiation. A long standing challenge for spasers that are utilized as nanoscale sources of radiation, is their poor coupling to the far-field radiation. Unlike conventional lasers that could produce directional beams, spasers have highly divergent radiation patterns due to their subwavelength apertures. Here, we theoretically and experimentally demonstrate a new technique for implementing distributed feedback (DFB) that is distinct from any other previously utilized DFB schemes for semiconductor lasers. The so-termed antenna-feedback scheme leads to single-mode operation in plasmonic lasers, couples the resonant SPP mode to a highly directional far-field radiation pattern, and integrates hybrid SPPs in surrounding medium into the operation of the DFB lasers. Experimentally, the antenna-feedback method, which does not require the phase matching to a well-defined effective index, is implemented for terahertz QCLs, and single-mode terahertz QCLs with a beam divergence as small as 4°×4° are demonstrated, which is the narrowest beam reported for any terahertz QCL to date. Moreover, in contrast to a negligible radiative field in conventional photonic band-edge lasers, in which the periodicity follows the integer multiple of half-wavelengths inside the active medium, antenna-feedback breaks this integer limit for the first time and enhances the radiative field of the lasing mode. Terahertz lasers with narrow-beam emission will find applications for integrated as well as standoff terahertz spectroscopy and sensing. Furthermore, the antenna-feedback scheme is generally applicable to any plasmonic laser with a Fabry–Perot cavity irrespective of its operating wavelength and could bring plasmonic lasers closer to practical applications.
Abstract not provided.
Laser and Photonics Reviews
Monocrystalline titanium dioxide (TiO2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii (Formula presented.) m through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Anisotropic TiO2 micro-resonators can be used to enhance the interplay of magnetic and electric dipole resonances in the emerging THz all-dielectric metamaterial technology. (Figure presented.) .
Abstract not provided.
Optica
The terahertz region is of great importance for spectroscopy since many molecules have absorption fingerprints there. Frequency combs based on terahertz quantum cascade lasers feature broadband coverage and high output powers in a compact package, making them an attractive option for broadband spectroscopy. Here, we demonstrate the first multiheterodyne spectroscopy using two terahertz quantum cascade laser combs. Over a spectral range of 250 GHz, we achieve average signal-to-noise ratios of 34 dB using cryogenic detectors and 24 dB using room-temperature detectors, all in just 100 µs. As a proof of principle, we use these combs to measure the broadband transmission spectrum of etalon samples and show that, with proper signal processing, it is possible to extend the multiheterodyne spectroscopy to quantum cascade laser combs operating in pulsed mode. This greatly expands the range of quantum cascade lasers that could be suitable for these techniques and allows for the creation of completely solid-state terahertz laser spectrometers.
IEEE Transactions on Terahertz Science and Technology
We present the temporal evolution of the terahertz (THz) field leading to the excitation of plasmonic resonances in carbon microfibers. The field evolution is mapped in space and time for the 3/2 wavelength resonance using a subwavelength aperture THz near-field probe with an embedded THz photoconductive detector. The excitation of surface waves at the fiber tips leads to the formation of a standing wave along the fiber. Local THz time-domain spectroscopy at one of the standing wave crests shows a clear third-order resonance peak at 1.65 THz, well described by the Lorentz model. This application of the subwavelength aperture THz near-field microscopy for mode mapping and local spectroscopy demonstrates the potential of near-field methods for studies of subwavelength plasmonic THz resonators.
Abstract not provided.
Physical Review Letters
In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACS Photonics
Nanoscale structuring of optical materials leads to modification of their properties and can be used for improving efficiencies of photonic devices and for enabling new functionalities. In ultrafast optoelectronic switches for generation and detection of terahertz (THz) radiation, incorporation of nanostructures allows us to overcome inherent limitations of photoconductive materials. We propose and demonstrate a nanostructured photoconductive THz detector for sampling highly localized THz fields, down to the level of λ/150. The nanostructure that consists of an array of optical nanoantennas and a distributed Bragg reflector forms a hybrid cavity, which traps optical gate pulses within the photoconductive layer. The effect of photon trapping is observed as enhanced absorption at a designed wavelength. This optically thin photoconductive THz detector allows us to detect highly confined evanescent THz fields coupled through a deeply subwavelength aperture as small as 2 μm (λ/150 at 1 THz). By monolithically integrating the THz detector with apertures ranging from 2 to 5 μm we realize higher spatial resolution and higher sensitivity in aperture-type THz near-field microscopy and THz time-domain spectroscopy.
Journal of Infrared, Millimeter, and Terahertz Waves
We have performed frequency locking of a dual, forward reverse emitting third-order distributed feedback quantum cascade laser (QCL) at 3.5 THz. By using both directions of THz emission in combination with two gas cells and two power detectors, we can for the first time perform frequency stabilization, while monitor the frequency locking quality independently. We also characterize how the use of a less sensitive pyroelectric detector can influence the quality of frequency locking, illustrating experimentally that the sensitivity of the detectors is crucial. Using both directions of terahertz (THz) radiation has a particular advantage for the application of a QCL as a local oscillator, where radiation from one side can be used for frequency/phase stabilization, leaving the other side to be fully utilized as a local oscillator to pump a mixer.
Abstract not provided.
Sandia journal manuscript; Not yet accepted for publication
Quantum Hall measurements have been performed on high-mobility GaAs/AlGaAs (p-type) and (n-type) quantum wells using a Hall/Anti-Hall bar configuration having both inner and outer edges. The potential distribution and the current flow in the bulk can be controlled by the external magnetic field or the driving current. Extreme situations occur at the Quantum Hall states where the current, driven by leads connected to the outer edge, flows exclusively in one half of the sample. In these states, the chemical potential of the inner edge aligns itself with the edge at ground potential. Accumulation and depletion of carriers takes place at the edge whose carriers flow away from the current source.
Sandia journal manuscript; Not yet accepted for publication
We have studied the cyclotron mobility of a Landau-quantized two-dimensional electron gas as a function of temperature (0.4 --100 K) at a fixed magnetic field (1.25 T) using terahertz time-domain spectroscopy in a sample with a low frequency mobility of μdc = 3.6 x 106 cm2 V-1 s-1 and a carrier concentration of ns = 2 x 106 cm-2. The low temperature mobility in this sample results from both impurity scattering and acoustic deformation potential scattering, with μ$-1\atop{CR}$ ≈ (2.1 x 105 cm2 V-1 s-1)-1 + (3.8 x 10-8 V sK-1 cm-2 x T)-1 at low temperatures. Above 50 K, the cyclotron oscillations show a strong reduction in both the oscillation amplitude and lifetime that is dominated by the contribution due to polar optical phonons. These results suggest that electron dephasing times as long as ~ 300 ps are possible even at this high lling factor (v = 6:6) in higher mobility samples (> 107 cm2 V-1 s-1) that have lower impurity concentrations and where the cyclotron mobility at this carrier concentration would be limited by acoustic deformation potential scattering.
Scientific Reports
Electrostatic gates are of paramount importance for the physics of devices based on high-mobility two-dimensional electron gas (2DEG) since they allow depletion of electrons in selected areas. This field-effect gating enables the fabrication of a wide range of devices such as, for example, quantum point contacts (QPC), electron interferometers and quantum dots. To fabricate these gates, processing is usually performed on the 2DEG material, which is in many cases detrimental to its electron mobility. Here we propose an alternative process which does not require any processing of the 2DEG material other than for the ohmic contacts. This approach relies on processing a separate wafer that is then mechanically mounted on the 2DEG material in a flip-chip fashion. This technique proved successful to fabricate quantum point contacts on both GaAs/AlGaAs materials with both moderate and ultra-high electron mobility.