Publications

Results 51–100 of 326
Skip to search filters

Landau-Zener-Stückelberg-Majorana Interferometry of a Single Hole

Physical Review Letters

Bogan, Alex; Studenikin, Sergei; Korkusinski, Marek; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy S.; Tracy, Lisa A.; Reno, J.L.; Hargett, Terry H.

We perform Landau-Zener-Stückelberg-Majorana (LZSM) spectroscopy on a system with strong spin-orbit interaction (SOI), realized as a single hole confined in a gated double quantum dot. Analogous to electron systems, at a magnetic field B=0 and high modulation frequencies, we observe photon-assisted tunneling between dots, which smoothly evolves into the typical LZSM funnel-shaped interference pattern as the frequency is decreased. In contrast to electrons, the SOI enables an additional, efficient spin-flip interdot tunneling channel, introducing a distinct interference pattern at finite B. Magnetotransport spectra at low-frequency LZSM driving show the two channels to be equally coherent. High-frequency LZSM driving reveals complex photon-assisted tunneling pathways, both spin conserving and spin flip, which form closed loops at critical magnetic fields. In one such loop, an arbitrary hole spin state is inverted, opening the way toward its all-electrical manipulation.

More Details

III-V semiconductor metasurface as the optical metamixer

Optics InfoBase Conference Papers

Vabishchevich, Polina V.; Liu, S.; Vaskin, A.; Reno, J.L.; Keeler, G.A.; Sinclair, Michael B.; Staude, I.; Brener, Igal B.

In this work, we experimentally demonstrate simultaneous occurrence of second-,third-, fourth-harmonic generation, sum-frequency generation, four-wave mixing and six-wave mixing processes in III-V semiconductor metasurfaces with spectra spanning from the UV to the near-IR.

More Details

8-beam local oscillator array at 4.7 THz generated by a phase grating and a quantum cascade laser

Optics Express

Mirzaei, B.; Silva, J.R.G.; Hayton, D.; Groppi, C.; Kao, T.Y.; Hu, Q.; Reno, J.L.; Gao, J.R.

We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the grating bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.

More Details

Characterization of an active metasurface using terahertz ellipsometry

Applied Physics Letters

Karl, Nicholas; Heimbeck, Martin S.; Everitt, Henry O.; Chen, Hou T.; Taylor, Antoinette J.; Brener, Igal B.; Benz, Alexander; Reno, J.L.; Mendis, Rajind; Mittleman, Daniel M.

Switchable metasurfaces fabricated on a doped epi-layer have become an important platform for developing techniques to control terahertz (THz) radiation, as a DC bias can modulate the transmission characteristics of the metasurface. To model and understand this performance in new device configurations accurately, a quantitative understanding of the bias-dependent surface characteristics is required. We perform THz variable angle spectroscopic ellipsometry on a switchable metasurface as a function of DC bias. By comparing these data with numerical simulations, we extract a model for the response of the metasurface at any bias value. Using this model, we predict a giant bias-induced phase modulation in a guided wave configuration. These predictions are in qualitative agreement with our measurements, offering a route to efficient modulation of THz signals.

More Details

Terahertz metasurface quantum-cascade VECSELs: Theory and performance

IEEE Journal of Selected Topics in Quantum Electronics

Xu, Luyao; Curwen, Christopher A.; Chen, Daguan; Reno, J.L.; Itoh, Tatsuo; Williams, Benjamin S.

Achieving both high power and high-quality beam pattern has been a longstanding challenge for terahertz (THz) quantum-cascade (QC) lasers largely due to their use of subwavelength metallic waveguides. Recently, the vertical-external-cavity surface-emitting laser (VECSEL) concept was demonstrated for the first time in the THz range and for a QC-laser. This is enabled by the development of an amplifying metasurface reflector capable of coupling incident free-space THz radiation to the QC-laser material such that it is amplified and reradiated. The THz metasurface QC-VECSEL initiates a new approach for making QC-lasers with high power and excellent beam pattern. Furthermore, the ability to engineer the electromagnetic phase, amplitude, and polarization response of the metasurface enables lasers with new functionality. This paper provides an overview of the fundamental theory, design considerations, and recent results for high-performance THz QC-VECSELs.

More Details

Achieving comb formation over the entire lasing range of quantum cascade lasers

Optics Letters

Yang, Yang; Burghoff, David; Reno, J.L.; Hu, Qing

Frequency combs based on quantum cascade lasers (QCLs) are finding promising applications in high-speed broadband spectroscopy in the terahertz regime, where many molecules have their “fingerprints.” To form stable combs in QCLs, an effective control of group velocity dispersion plays a critical role. The dispersion of the QCL cavity has two main parts: a static part from the material and a dynamic part from the intersubband transitions. Unlike the gain, which is clamped to a fixed value above the lasing threshold, dispersion associated with the intersubband transitions changes with bias, even above the threshold, and this reduces the dynamic range of comb formation. Here, by incorporating tunability into the dispersion compensator, we demonstrate a QCL device exhibiting comb operation from Ith to Imax, which greatly expands the operation range of the frequency combs.

More Details

Frequency-mixing in GaAs dielectric metasurfaces

International Conference on Optical MEMS and Nanophotonics

Vabishchevich, Polina V.; Liu, Sheng L.; Vaskin, A.; Reno, J.L.; Keeler, G.A.; Sinclair, Michael B.; Staude, I.; Brener, Igal B.

We experimentally demonstrate resonantly enhanced nonlinear optical processes such as 2nd-, 3rd-, and 4th-harmonic generations, sum-frequency generation, four-wave mixing processes, etc., in the visible and near-IR using GaAs dielectric metasurfaces.

More Details

Nonlinear terahertz metamaterials with active electrical control

Applied Physics Letters

Keiser, G.R.; Karl, N.; Liu, P.Q.; Tulloss, C.; Chen, H.T.; Taylor, A.J.; Brener, Igal B.; Reno, J.L.; Mittleman, D.M.

We present a study of an electrically modulated nonlinear metamaterial consisting of an array of split-ring resonators fabricated on n-type gallium arsenide. The resonant metamaterial nonlinearity appears as an intensity-dependent transmission minimum at terahertz frequencies and arises from the interaction between local electric fields in the split-ring resonator (SRR) capacitive gaps and charge carriers in the n-type substrate. We investigate the active tuning range of the metamaterial device as the incident terahertz field intensity is increased and conversely the effect of an applied DC bias on the terahertz field-induced nonlinear modulation of the metamaterial response. Applying a DC bias to the metamaterial sample alters the nonlinear response and reduces the net nonlinear modulation. Similarly, increasing the incident terahertz field intensity decreases the net modulation induced by an applied DC bias. We interpret these results in terms of DC and terahertz-field-assisted carrier acceleration, scattering, and multiplication processes, highlighting the unique nature of this DC-field modulated terahertz nonlinearity.

More Details

Two-well terahertz quantum cascade lasers with suppressed carrier leakage

Applied Physics Letters

Albo, Asaf; Flores, Yuri V.; Hu, Qing; Reno, J.L.

The mechanisms that limit the temperature performance of diagonal GaAs/Al0.15GaAs0.85-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated leakage of charge carriers through excited states into the continuum. THz-QCLs with energetically higher-laying excited states supported by sufficiently high barriers aim to eliminate these leakage mechanisms and lead to improved temperature performance. Although suppression of thermally activated carrier leakage was realized in a three-well THz-QCL based on a resonant-phonon scheme, no improvement in the temperature performance was reported thus far. Here, we report a major improvement in the temperature performance of a two-quantum-well direct-phonon THz-QCL structure. We show that the improved laser performance is due to the suppression of the thermally activated carrier leakage into the continuum with the increase in the injection barrier height. Moreover, we demonstrate that high-barrier two-well structures can support a clean three-level laser system at elevated temperatures, which opens the opportunity to achieve temperature performance beyond the state-of-the-art.

More Details

High performance terahertz metasurface quantum-cascade VECSEL with an intra-cryostat cavity

Applied Physics Letters

Xu, Luyao; Curwen, Christopher A.; Reno, J.L.; Williams, Benjamin S.

A terahertz quantum-cascade (QC) vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated with over 5 mW power in continuous-wave and single-mode operation above 77 K, in combination with a near-Gaussian beam pattern with a full-width half-max divergence as narrow as ∼5° × 5°, with no evidence of thermal lensing. This is realized by creating an intra-cryostat VECSEL cavity to reduce the cavity loss and designing an active focusing metasurface reflector with low power dissipation for efficient heat removal. Also, the intra-cryostat configuration allows the evaluation of QC-VECSEL operation vs. temperature, showing a maximum pulsed mode operating temperature of 129 K. While the threshold current density in the QC-VECSEL is higher compared to that in a conventional edge-emitting metal-metal waveguide QC-laser, the beam quality, slope efficiency, maximum power, and thermal resistance are all significantly improved.

More Details

Unidirectional photonic wire laser

Nature Photonics

Khalatpour, Ali; Reno, J.L.; Kherani, Nazir P.; Hu, Qing

Photonic wire lasers are a new genre of lasers that have a transverse dimension much smaller than the wavelength. Unidirectional emission is highly desirable as most of the laser power will be in the desired direction. Owing to their small lateral dimension relative to the wavelength, however, the mode mostly propagates outside the solid core. Consequently, conventional approaches to attach a highly reflective element to the rear facet, whether a thin film or a distributed Bragg reflector, are not applicable. Here we propose a simple and effective technique to achieve unidirectionality. Terahertz quantum-cascade lasers with distributed feedback (DFB) were chosen as the platform of the photonic wire lasers. Unidirectionality is achieved with a power ratio of the forward/backward of about eight, and the power of the forward-emitting laser is increased by a factor of 1.8 compared with a reference bidirectional DFB laser. Furthermore, we achieved a wall plug power efficiency of â 1/41%.

More Details

Bloch-Grüneisen nonlinearity of electron transport in GaAs/AlGaAs heterostructures

Physical Review B

Raichev, O.E.; Hatke, A.T.; Zudov, M.A.; Reno, J.L.

We report on nonlinear transport measurements in a two-dimensional electron gas hosted in GaAs/AlGaAs heterostructures. Upon application of direct current, the low-temperature differential resistivity acquires a positive correction, which exhibits a pronounced maximum followed by a plateau. With increasing temperature, the nonlinearity diminishes and disappears. These observations can be understood in terms of a crossover from the Bloch-Grüneisen regime to the quasielastic scattering regime as the electrons are heated by direct current. Calculations considering the interaction of electrons with acoustic phonons provide a reasonable description of our experimental findings.

More Details

Amplifiers of free-space terahertz radiation

Optica

Kao, Tsung Y.; Reno, J.L.; Hu, Qing

Amplifiers of free-space radiation are quite useful, especially in spectral ranges where the radiation is weak and sensitive detectors are hard to come by. A preamplification of the said weak radiation signal will significantly boost the S/N ratio in remote sensing and imaging applications. This is especially true in the terahertz (THz) range where the radiation signal is often weak and sensitive detectors require the cooling of liquid helium. Although quantum cascade structures are promising for providing amplification in the terahertz band from 2 to 5 THz, a THz amplifier has been demonstrated in an integrated form, in which the source is in close proximity to the amplifier, which will not be suitable for the aforementioned applications. Here we demonstrate what we believe is a novel approach to achieve significant amplification of free-space THz radiation using an array of short-cavity, surface-emitting THz quantum cascade lasers operating marginally below the lasing threshold as a Fabry–Perot amplifier. This free-space “slow light” amplifier provides 7.5 dB(×5.6) overall gain at ∼3.1 THz. The proposed devices are suitable for low-noise pre-amplifiers in heterodyne detection systems and for THz imaging systems. With the sub-wavelength pixel size of the array, the reflective amplifier can also be categorized as active metasurface, with the ability to amplify or absorb specific frequency components of the input THz signal.

More Details

Huygens' Metasurfaces Enabled by Magnetic Dipole Resonance Tuning in Split Dielectric Nanoresonators

Nano Letters

Liu, Sheng L.; Vaskin, Aleksandr; Campione, Salvatore; Wolf, Omri; Sinclair, Michael B.; Reno, J.L.; Keeler, Gordon A.; Staude, Isabelle; Brener, Igal B.

Dielectric metasurfaces that exploit the different Mie resonances of nanoscale dielectric resonators are a powerful platform for manipulating electromagnetic fields and can provide novel optical behavior. In this work, we experimentally demonstrate independent tuning of the magnetic dipole resonances relative to the electric dipole resonances of split dielectric resonators (SDRs). By increasing the split dimension, we observe a blue shift of the magnetic dipole resonance toward the electric dipole resonance. Therefore, SDRs provide the ability to directly control the interaction between the two dipole resonances within the same resonator. For example, we achieve the first Kerker condition by spectrally overlapping the electric and magnetic dipole resonances and observe significantly suppressed backward scattering. Moreover, we show that a single SDR can be used as an optical nanoantenna that provides strong unidirectional emission from an electric dipole source.

More Details

Coulomb-interaction induced coupling of Landau levels in intrinsic and modulation-doped quantum wells

Physical Review B

Paul, J.; Stevens, C.E.; Zhang, H.; Dey, P.; McGinty, D.; McGill, S.A.; Smith, R.P.; Reno, J.L.; Turkowski, V.; Perakis, I.E.; Hilton, D.J.; Karaiskaj, D.

We have performed two-dimensional Fourier transform spectroscopy on intrinsic and modulation doped quantum wells in external magnetic fields up to 10 T. In the undoped sample, the strong Coulomb interactions and the increasing separations of the electron and hole charge distributions with increasing magnetic fields lead to a nontrivial in-plane dispersion of the magneto-excitons. Thus, the discrete and degenerate Landau levels are coupled to a continuum. The signature of this continuum is the emergence of elongated spectral line shapes at the Landau level energies, which are exposed by the multidimensional nature of our technique. Surprisingly, the elongation of the peaks is completely absent in the lowest Landau level spectra obtained from the modulation doped quantum well at high fields.

More Details

Metasurface quantum-cascade laser with electrically switchable polarization

Optica

Xu, Luyao; Chen, Daguan; Curwen, Christopher A.; Memarian, Mohammad; Reno, J.L.; Itoh, Tatsuo; Williams, Benjamin S.

Dynamic control of a laser’s output polarization state is desirable for applications in polarization sensitive imaging, spectroscopy, and ellipsometry. Using external elements to control the polarization state is a common approach. Less common and more challenging is directly switching the polarization state of a laser, which, however, has the potential to provide high switching speeds, compactness, and power efficiency. Here, we demonstrate a new approach to achieve direct and electrically controlled polarization switching of a semiconductor laser. This is enabled by integrating a polarization-sensitive metasurface with a semiconductor gain medium to selectively amplify a cavity mode with the designed polarization state, therefore leading to an output in the designed polarization. Here, the demonstration is for a terahertz quantum-cascade laser, which exhibits electrically controlled switching between two linear polarizations separated by 80°, while maintaining an excellent beam with a narrow divergence of ∼3° × 3° and a singlemode operation fixed at ∼3.4 THz, combined with a peak power as high as 93 mW at a temperature of 77 K. The polarization-sensitive metasurface is composed of two interleaved arrays of surface-emitting antennas, all of which are loaded with quantum-cascade gain materials. Each array is designed to resonantly interact with one specific polarization; when electrical bias is selectively applied to the gain material in one array, selective amplification of one polarization occurs. The amplifying metasurface is used along with an output coupler reflector to build a vertical-external-cavity surface-emitting laser whose output polarization state can be switched solely electrically. This work demonstrates the potential of exploiting amplifying polarization-sensitive metasurfaces to create lasers with desirable polarization states—a concept which is applicable beyond the terahertz and can potentially be applied to shorter wavelengths.

More Details

Detection of internal fields in double-metal terahertz resonators

Applied Physics Letters

Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei; Bozhevolnyi, Sergey I.; Brener, Igal B.; Reno, J.L.

Terahertz (THz) double-metal plasmonic resonators enable enhanced light-matter coupling by exploiting strong field confinement. The double-metal design however restricts access to the internal fields. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal electromagnetic fields in double-metal plasmonic resonators. We use the concept of image charges and aperture-type scanning near-field THz time-domain microscopy to probe the fields confined within the closed resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.

More Details

Large static tuning of narrow-beam terahertz plasmonic lasers operating at 78 K

APL Photonics

Wu, Chongzhao; Jin, Yuan; Reno, J.L.; Kumar, Sushil

A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser's surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ∼57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs), which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide) on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning range compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL's characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7°) is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.

More Details

Optically thin hybrid cavity for terahertz photo-conductive detectors

Applied Physics Letters

Thompson, R.J.; Siday, T.; Glass, S.; Luk, Ting S.; Reno, J.L.; Brener, Igal B.; Mitrofanov, O.

The efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that the nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.

More Details

Transient GaAs plasmonic metasurfaces at terahertz frequencies

ACS Photonics

Yang, Yuanmu Y.; Kamaraju, N.; Campione, Salvatore; Liu, Sheng L.; Reno, J.L.; Sinclair, Michael B.; Prasankumar, Rohit P.; Brener, Igal B.

We demonstrate the ultrafast formation of terahertz (THz) metasurfaces through all-optical creation of spatially modulated carrier density profiles in a deep-subwavelength GaAs film. The switch-on of the transient plasmon mode, governed by the GaAs effective electron mass and electron− phonon interactions, is revealed by structured-optical pump THz probe spectroscopy, on a time scale of 500 fs. By modulating the carrier density using different pump fluences, we observe a wide tuning of the electric dipole resonance of the transient GaAs metasurface from 0.5 THz to 1.7 THz. Furthermore, we numerically demonstrate that the metasurface presented here can be generalized to more complex architectures for realizing functionalities such as perfect absorption, leading to a 30 dB modulation depth. The platform also provides a pathway to achieve ultrafast manipulation of infrared beams in the linear and, potentially, nonlinear regime.

More Details

High-cooperativity terahertz landau polaritons in the ultrastrong coupling regime

International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz

Li, Xinwei; Zhang, Qi; Lou, Minhan; Reno, J.L.; Pan, Wei P.; Watson, John D.; Manfra, Michael J.; Kono, Junichiro

We have integrated an ultrahigh mobility twodimensional electron gas with a high-quality-factor terahertz photonic cavity. With a quantizing magnetic field and at low temperatures, we demonstrated collective nonperturbative coupling of the electron cyclotron resonance with terahertz cavity photons with a high cooperativity. Due to the suppression of superradiance-induced broadening of cyclotron resonance by the high-quality-factor cavity, our hybrid quantum system exhibited unprecedentedly sharp polariton lines and a large vacuum Rabi splitting simultaneously.

More Details

III-V dielectric metasurfaces: Enhanced nonlinearities and emission control

Optics InfoBase Conference Papers

Liu, Sheng L.; Vaskin, Aleksandr; Vabishchevich, Polina V.; Addamane, Sadhvikas; Keeler, Gordon A.; Reno, J.L.; Yang, Yuanmu Y.; Staude, Isabelle; Balarishnan, Ganesh; Sinclair, Michael B.; Brener, Igal B.

Using III-V dielectric metasurfaces, we experimentally demonstrate resonantly enhanced harmonic generations up to the 4th order. Moreover, we observe large enhancements and spectral tailoring of the photoluminescence of quantum dots embedded inside dielectric metasurfaces. © OSA 2017.

More Details

Terahertz plasmonic lasers with narrow beams and large tunability

Proceedings of SPIE - The International Society for Optical Engineering

Jin, Yuan; Wu, Chongzhao; Reno, J.L.; Kumar, Sushil

Plasmonic lasers generate coherent long-range or localized surface-plasmon-polaritons (SPPs), where the SPP mode exists at the interface of the metal (or a metallic nanoparticle) and a dielectric. Metallic-cavities sup- porting SPP modes are also utilized for terahertz quantum-cascade lasers (QCLs). Due to subwavelength apertures, plasmonic lasers have highly divergent radiation patterns. Recently, we theoretically and experimentally demonstrated a new technique for implementing distributed-feedback (DFB), which is termed as an antenna- feedback scheme, to establish a hybrid SPP mode in the surrounding medium of a plasmonic laser's cavity with a large wavefront. This technique allows such lasers to radiate in narrow beams without requirement of any specific design considerations for phase-matching. Experimental demonstration is done for terahertz QCLs that show beam-divergence as small as 4-degrees. The antenna-feedback scheme has a characteristic feature in that refractive-index of the laser's surrounding medium affects its radiative frequency in the same vein as refractive- index of the cavity. Hence, any perturbations in the refractive-index of the surrounding medium could lead to large modulation in the laser's emission frequency. Along this line, we report ∼57 GHz reversible, continuous, and mode-hop-free tuning of such QCLs operating at 78 K based on post-process deposition/etching of a dielectric on an already mounted QCL chip. This is the largest tuning range achieved for terahertz QCLs when operating much above the temperature of liquid-Helium. We review the aforementioned experimental results and discuss methods to increase optical power output from terahertz QCLs with antenna-feedback. Peak power output of ∼13 mW is realized for a 3.3 THz QCL operating in a Stirling cooler at 54 K. A new dual-slit photonic structure based on antenna-feedback scheme is proposed to further improve output power as well as provide enhanced tunability.

More Details

Broken Symmetry Dielectric Resonators for High Quality Factor Fano Metasurfaces

ACS Photonics

Campione, Salvatore; Liu, Sheng L.; Basilio, Lorena I.; Warne, Larry K.; Langston, William L.; Luk, Ting S.; Wendt, J.R.; Reno, J.L.; Keeler, Gordon A.; Brener, Igal; Sinclair, Michael B.

We present a new approach to dielectric metasurface design that relies on a single resonator per unit cell and produces robust, high quality factor Fano resonances. Our approach utilizes symmetry breaking of highly symmetric resonator geometries, such as cubes, to induce couplings between the otherwise orthogonal resonator modes. In particular, we design perturbations that couple "bright" dipole modes to "dark" dipole modes whose radiative decay is suppressed by local field effects in the array. Our approach is widely scalable from the near-infrared to radio frequencies. We first unravel the Fano resonance behavior through numerical simulations of a germanium resonator-based metasurface that achieves a quality factor of ∼1300 at ∼10.8 μm. Then, we present two experimental demonstrations operating in the near-infrared (∼1 μm): a silicon-based implementation that achieves a quality factor of ∼350; and a gallium arsenide-based structure that achieves a quality factor of ∼600, the highest near-infrared quality factor experimentally demonstrated to date with this kind of metasurface. Importantly, large electromagnetic field enhancements appear within the resonators at the Fano resonant frequencies. We envision that combining high quality factor, high field enhancement resonances with nonlinear and active/gain materials such as gallium arsenide will lead to new classes of active optical devices.

More Details

Dispersion dynamics of quantum cascade lasers

Optica

Burghoff, David; Yang, Yang; Reno, J.L.; Hu, Qing

A key parameter underlying the efficacy of any nonlinear optical process is group velocity dispersion. In quantum cascade lasers (QCLs), there have been several recent demonstrations of devices exploiting nonlinearities in both the mid-infrared and the terahertz. Though the gain of QCLs has been well studied, the dispersion has been much less investigated, and several questions remain about its dynamics and precise origin. In this work, we use time-domain spectroscopy to investigate the dispersion of broadband terahertz QCLs, and demonstrate that contributions from both the material and the intersubband transitions are relevant. We show that in contrast to the laser gain—which is clamped to a fixed value above lasing threshold—the dispersion changes with bias even above threshold, which is a consequence of shifting intersubband populations. We also examine the role of higher-order dispersion in QCLs and discuss the ramifications of our result for devices utilizing nonlinear effects, such as frequency combs.

More Details

2D and 3D all dielectric metamaterials made from III-V semiconductors

2016 Conference on Lasers and Electro-Optics, CLEO 2016

Liu, Sheng L.; Keeler, Gordon A.; Reno, J.L.; Sinclair, Michael B.; Brener, Igal B.

We present all-dielectric 2D and 3D metamaterials that are monolithically fabricated from III-V semiconductor nanostructures. The active/gain and high optical nonlinearity properties of the metamaterials can lead to new classes of active devices.

More Details

Efficient second harmonic generation from GaAs all-dielectric metasurfaces

2016 Conference on Lasers and Electro-Optics, CLEO 2016

Liu, Sheng L.; Keeler, Gordon A.; Reno, J.L.; Yang, Yuanmu Y.; Sinclair, Michael B.; Brener, Igal B.

We experimentally observe large enhancement of second-harmonic generation (SHG) from GaAs metasurfaces. The SHG polarization when excited at the electric and magnetic dipole resonances is orthogonal and can be attributed to different nonlinear generation mechanisms.

More Details

Tradeoffs between oscillator strength and lifetime in terahertz quantum cascade lasers

Applied Physics Letters

Chan, Chun W.; Albo, Asaf; Hu, Qing; Reno, J.L.

Contemporary research into diagonal active region terahertz quantum cascade lasers for high temperature operation has yielded little success. We present evidence that the failure of high diagonality alone as a design strategy is due to a fundamental trade-off between large optical oscillator strength and long upper-level lifetime. We hypothesize that diagonality needs to be paired with increased doping in order to succeed, and present evidence that highly diagonal designs can benefit from much higher doping than normally found in terahertz quantum cascade lasers. In assuming the benefits of high diagonality paired with high doping, we also highlight important challenges that need to be overcome, specifically the increased importance of carrier induced band-bending and impurity scattering.

More Details

Focusing metasurface quantum-cascade laser with a near diffraction-limited beam

Optics Express

Xu, Luyao; Chen, Daguan; Itoh, Tatsuo; Reno, J.L.; Williams, Benjamin S.

A terahertz vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated using an active focusing reflectarray metasurface based on quantum-cascade gain material. The focusing effect enables a hemispherical cavity with flat optics, which exhibits higher geometric stability than a plano-plano cavity and a directive and circular neardiffraction limited Gaussian beam with M2 beam parameter as low as 1.3 and brightness of 1.86 � 106 Wsr-1m-2. This work initiates the potential of leveraging inhomogeneous metasurface and reflectarray designs to achieve high-power and high-brightness terahertz quantum-cascade VECSELs.

More Details
Results 51–100 of 326
Results 51–100 of 326