Detecting Bound Spins Using Coupled Quantum Point Contacts
Review Scientific Instruments
Abstract not provided.
Review Scientific Instruments
Abstract not provided.
IEEE Journal of Selected Topics in Quantum Electronics
Abstract not provided.
Physica E: Low-Dimensional Systems and Nanostructures
We review recent work where we have investigated the non-linear transient response of quantum point contacts (QPCs) using pulsed excitation with sub-nanosecond time resolution. The transient response of these devices is shown to be dominated by a large parallel capacitance that is independent of the QPC conductance and pulse amplitude. These characteristics lead us to suggest that the capacitance is associated with charging of the two-dimensional reservoirs that source and sink current to the QPC. Our investigations also show that the transient conductance of the QPC must develop very quickly as the voltage pulse is applied, at least on a time scale shorter than the fastest rise time (2 ns) used in the experiments. We also find the existence of a characteristic fixed point in the non-linear conductance, at which its value is bias independent. The fixed point appears to correspond to the situation where the unbiased QPC is almost depopulated and can be accounted for by considering the unidirectional population of QPC subbands by the voltage bias. To discuss the behavior of the transient conductance away from the fixed point, we find that it should be necessary to consider the influence of the applied bias on the QPC profile and electron-phonon scattering. © 2007 Elsevier B.V. All rights reserved.
The purpose of this work was to develop a wavelength tunable detector for Terahertz spectroscopy and imaging. Our approach was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays. When this work began, grating-gate gate detectors, while having many promising characteristics, had a noise-equivalent power (NEP) of only 10{sup -5} W/{radical}Hz. Over the duration of this project, we have obtained a true NEP of 10{sup -8} W/{radical}Hz and a scaled NEP of 10{sup -9}W/{radical}Hz. The ultimate goal for these detectors is to reach a NEP in the 10{sup -9{yields}-10}W/{radical}Hz range; we have not yet seen a roadblock to continued improvement.
Abstract not provided.
Science
Abstract not provided.
Journal of Applied Physics
Abstract not provided.
Physical Review Letters
Abstract not provided.
IEEE Transactions on Magnetism
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Optics Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nature
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
IRMMW-THz2007 - Conference Digest of the Joint 32nd International Conference on Infrared and Millimetre Waves, and 15th International Conference on Terahertz Electronics
This paper presents heterodyne mixer measurements at 2.9 THz using quantum cascade lasers (QCLs) as sources. The linewidth of the laser was explored by biasing it to run in dual mode operation and observing the linewidth of the beat note. In addition the frequency of the QCL is determined by beating it against a deuterated methanol line from a molecular gas laser.
Abstract not provided.
Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.
Proposed for publication in Applied Physics Letters.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
A split-grating-gate detector design has been implemented in an effort to combine the tunabiliry of the basic gratinggate detector with the high responsivity observed in these detectors when approaching the pinchoff regime. The redesign of the gates by itself offers several orders of magnitude improvement in resonant responsivity. Further improvements are gained by placing the detector element on a thermally isolating membrane in order to increase the effects of lattice heating on the device response.
Abstract not provided.