Publications

Results 51–100 of 121
Skip to search filters

The effect of chrome adhesion layer on quartz resonator aging

Wessendorf, Kurt O.; Ohlhausen, J.A.

This SAND report documents a late start LDRD designed to determine the possible aging effects of a quartz resonator gold adhesion layer. Sandia uses quartz resonators for applications. These applications require a very stable frequency source with excellent aging (low drift) characteristics. These parts are manufactured by one of our qualified vendors outside Sandia Laboratories, Statek Corp. Over the years we, Sandia and the vendor, have seen aging variations that have not been completely explained by the typical mechanisms known in the industry. One theory was that the resonator metallization may be contributing to the resonator aging. This LDRD would allow us to test and analyze a group of resonators with known differentiating metallization and via accelerated aging determine if a chrome adhesion layer used to accept the final gold plating may contribute to poor aging. We worked with our main vendor to design and manufacture a set of quartz resonators with a wide range of metallization thickness ratios between the chrome and gold that will allow us determine the cause of this aging and which plating thickness ratios provide the best aging performance while not degrading other key characteristics.

More Details

Experiences with the High Energy Resolution Optics (HERO) update on a physical electronics 690 auger system

Wallace, William O.; Ohlhausen, J.A.; Brumbach, Michael T.

We will present our experiences with the new High Energy Resolution Optics (HERO) upgrade on a Physical Electronics Auger 690 system. This upgrade allows the single pass cylindrical analyzer in the Auger system to achieve higher energy resolution than in the standard mode. With this upgrade, it should be possible to separate chemical states for certain elements. Also, it should be possible to separate closely spaced peaks from selected elements that have been difficult or impossible to separate without the upgrade. Specifically, we will investigate practical use of this upgrade in the analysis of materials systems where overlapping peaks have historically been an issue, such as Kovar, which consists of the elements Ni, Fe and Co. Strategies for the successful use of the technique as well as its current limitations will be shown.

More Details

The role of polymer formation during vapor phase lubrication of silicon

Dugger, Michael T.; Ohlhausen, J.A.; Dirk, Shawn M.

The lubrication of silicon surfaces with alcohol vapors has recently been demonstrated. With a sufficient concentration of pentanol vapor present, sliding of a silica ball on an oxidized silicon wafer can proceed with no measurable wear. The initial results of time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of wear surfaces revealed a reaction product having thickness on the order of a monolayer, and with an ion spectrum that included fragments having molecular weights of 200 or more that occurred only inside the wear tracks. The parent alcohol molecule pentanol, has molecular weight of 88amu, suggesting that reactions of adsorbed alcohols on the wearing surfaces allowed polymerization of the alcohols to form higher molecular weight species. In addition to pin-on-disk studies, lubrication of silicon surfaces with pentanol vapors has also been demonstrated using MicroElectroMechanical Systems (MEMS) devices. Recent investigations of the reaction mechanisms of the alcohol molecules with the oxidized silicon surfaces have shown that wearless sliding requires a concentration of the alcohol vapor that is dependent upon the contact stress during sliding, with higher stress requiring a greater concentration of alcohol. Different vapor precursors including those with acid functionality, olefins, and methyl termination also produce polymeric reaction products, and can lubricate the silica surfaces. Doping the operating environment with oxygen was found to quench the formation of the polymeric reaction product, and demonstrates that polymer formation is not necessary for wearless sliding.

More Details

Characterization of the surface changes during the activation process of erbium/erbium oxide for hydrogen storage

Brumbach, Michael T.; Zavadil, Kevin R.; Snow, Clark S.; Ohlhausen, J.A.

Erbium is known to effectively load with hydrogen when held at high temperature in a hydrogen atmosphere. To make the storage of hydrogen kinetically feasible, a thermal activation step is required. Activation is a routine practice, but very little is known about the physical, chemical, and/or electronic processes that occur during Activation. This work presents in situ characterization of erbium Activation using variable energy photoelectron spectroscopy at various stages of the Activation process. Modification of the passive surface oxide plays a significant role in Activation. The chemical and electronic changes observed from core-level and valence band spectra will be discussed along with corroborating ion scattering spectroscopy measurements.

More Details

Characterization of the surface changes during the activation of erbium/erbium oxide for hydrogen storage

Zavadil, Kevin R.; Snow, Clark S.; Ohlhausen, J.A.

Erbium is known to effectively load with hydrogen when held at high temperature in a hydrogen atmosphere. To make the storage of hydrogen kinetically feasible, a thermal activation step is required. Activation is a routine practice, but very little is known about the physical, chemical, and/or electronic processes that occur during Activation. This work presents in situ characterization of erbium Activation using variable energy photoelectron spectroscopy at various stages of the Activation process. Modification of the passive surface oxide plays a significant role in Activation. The chemical and electronic changes observed from core-level and valence band spectra will be discussed along with corroborating ion scattering spectroscopy measurements.

More Details

Predicting fracture in micron-scale polycrystalline silicon MEMS structures

Boyce, Brad B.; Foulk, James W.; Field, Richard V.; Ohlhausen, J.A.

Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use a measured tensile strength distribution to predict the strength of a complex MEMS structure. To address such issues, two recently developed high throughput MEMS tensile test techniques have been used to measure strength distribution tails. The measured tensile strength distributions enable the definition of a threshold strength as well as an inferred maximum flaw size. The nature of strength-controlling flaws has been identified and sources of the observed variation in strength investigated. A double edge-notched specimen geometry was also tested to study the effect of a severe, micron-scale stress concentration on the measured strength distribution. Strength-based, Weibull-based, and fracture mechanics-based failure analyses were performed and compared with the experimental results.

More Details

Spectroscopy and capacitance measurements of tunneling resonances in an Sb-implanted point contact

Bishop, Nathaniel B.; Stevens, Jeffrey S.; Childs, Kenton D.; Ohlhausen, J.A.; Lilly, Michael L.; Carroll, Malcolm; Young, Ralph W.; Bielejec, Edward S.; Ten Eyck, Gregory A.; Wendt, J.R.; Rahman, Rajib R.; Grubbs, Robert K.

We fabricated a split-gate defined point contact in a double gate enhancement mode Si-MOS device, and implanted Sb donor atoms using a self-aligned process. E-beam lithography in combination with a timed implant gives us excellent control over the placement of dopant atoms, and acts as a stepping stone to focused ion beam implantation of single donors. Our approach allows us considerable latitude in experimental design in-situ. We have identified two resonance conditions in the point contact conductance as a function of split gate voltage. Using tunneling spectroscopy, we probed their electronic structure as a function of temperature and magnetic field. We also determine the capacitive coupling between the resonant feature and several gates. Comparison between experimental values and extensive quasi-classical simulations constrain the location and energy of the resonant level. We discuss our results and how they may apply to resonant tunneling through a single donor.

More Details

LDRD 140639 final report : investigation of transmutation claims

Reich, Jeffrey E.; Grant, Richard P.; Ohlhausen, J.A.

The Proton-21 Laboratory in the Ukraine has been publishing results on shock-induced transmutation of several elements, including Cobalt 60 into non-radioactive elements. This report documents exploratory characterization of a shock-compressed Aluminum-6061 sample, which is the only available surrogate for the high-purity copper samples in the Proton-21 experiments. The goal was to determine Sandia's ability to detect possible shock-wave-induced transmutation products and to unambiguously validate or invalidate the claims in collaboration with the Proton-21 Laboratory. We have developed a suitable characterization process and tested it on the surrogate sample. Using trace elemental analysis capabilities, we found elevated and localized concentrations of impurity elements like the Ukrainians report. All our results, however, are consistent with the ejection of impurities that were not in solution in our alloy or were deposited from the cathode during irradiation or possibly storage. Based on the detection capabilities demonstrated and additional techniques available, we are positioned to test samples from Proton-21 if funded to do so.

More Details

Multivariate statistical analysis of three-spatial-dimension TOF-SIMS raw data sets

Analytical Chemistry

Smentkowski, V.S.; Ostrowski, S.G.; Braunstein, E.; Keenan, M.R.; Ohlhausen, J.A.; Kotula, Paul G.

Three-spatial-dimension (3D) time-of-flight-secondary ion mass spectrometry (TOF-SIMS) analysis can be performed if an X-Y image is saved at each depth of a depth profile. In this paper, we will show how images reconstructed from specified depths, depth profiles generated from specific X-Y coordinates, as well as three-spatial-dimensional rendering provide for a better understanding of the sample than traditional depth profiling where only a single spectrum is collected at each depth. We will also demonstrate, for the first time, that multivariate statistical analysis (MVSA) tools can be used to perform a rapid, unbiased analysis of the entire 3D data set. In the example shown here, retrospective analysis and MVSA revealed a more complete picture of the 3D chemical distribution of the sample than did the as-measured depth profiling alone. Color overlays of the MVSA components as well as animated movies allowing for visualization (in 3D) from various angles will be provided. © 2007 American Chemical Society.

More Details

Spectrum Imaging Approaches for Bioforensics

Sandia journal manuscript; Not yet accepted for publication

Ohlhausen, J.A.; Kotula, Paul G.; Michael, Joseph R.

Spectrum imaging combined with multivariate statistics is an approach to microanalysis that makes the maximum use of the large amount of data potentially collected in forensics analysis. Here, this study examines the efficacy of using spectrum imaging-enabled microscopies to identify chemical signatures in simulated bioagent materials. This approach allowed for the ready discrimination between all samples in the test. In particular, the spectrum imaging approach allowed for the identification of particles with trace elements that would have been missed with a more traditional approach to forensic microanalysis. Finally, the importance of combining signals from multiple length scales and analytical sensitivities is discussed.

More Details

Macro- to nanoscale wear prevention via molecular adsorption

Proposed for publication in Science.

Dugger, Michael T.; Ohlhausen, J.A.

As the size of mechanical systems shrinks from macro- to nanoscales, surface phenomena such as adhesion, friction, and wear become increasingly significant. This paper demonstrates the use of alcohol adsorption as a means of continuously replenishing the lubricating layer on the working device surfaces and elucidates the tribochemical reaction products formed in the sliding contact region. Friction and wear of native silicon oxide were studied over a wide range of length scales from macro- to nanoscales using a ball-on-flat tribometer (millimeter scale), sidewall microelectromechanical system (MEMS) tribometer (micrometer scale), and atomic force microscopy (nanometer scale). In all cases, the alcohol vapor adsorption successfully lubricated and prevented wear. Imaging time-of-flight secondary ion mass spectrometry analysis of the sliding contact region revealed that high molecular weight oligomeric species were formed via tribochemical reactions of the adsorbed linear alcohol molecules. These tribochemical products seemed to enhance the lubrication and wear prevention. In the case of sidewall MEMS tests, the lifetime of the MEMS device was radically increased via vapor-phase lubrication with alcohol.

More Details

Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS)

Walraven, J.A.; Cox, James C.; Skousen, Troy J.; Ohlhausen, J.A.; Jenkins, Mark W.; Jokiel, Bernhard J.; Parson, Ted B.; Tang, Michelle D.

Qualification of microsystems for weapon applications is critically dependent on our ability to build confidence in their performance, by predicting the evolution of their behavior over time in the stockpile. The objective of this work was to accelerate aging mechanisms operative in surface micromachined silicon microelectromechanical systems (MEMS) with contacting surfaces that are stored for many years prior to use, to determine the effects of aging on reliability, and relate those effects to changes in the behavior of interfaces. Hence the main focus was on 'dormant' storage effects on the reliability of devices having mechanical contacts, the first time they must move. A large number ({approx}1000) of modules containing prototype devices and diagnostic structures were packaged using the best available processes for simple electromechanical devices. The packaging processes evolved during the project to better protect surfaces from exposure to contaminants and water vapor. Packages were subjected to accelerated aging and stress tests to explore dormancy and operational environment effects on reliability and performance. Functional tests and quantitative measurements of adhesion and friction demonstrated that the main failure mechanism during dormant storage is change in adhesion and friction, precipitated by loss of the fluorinated monolayer applied after fabrication. The data indicate that damage to the monolayer can occur at water vapor concentrations as low as 500 ppm inside the package. The most common type of failure was attributed to surfaces that were in direct contact during aging. The application of quantitative methods for monolayer lubricant analysis showed that even though the coverage of vapor-deposited monolayers is generally very uniform, even on hidden surfaces, locations of intimate contact can be significantly depleted in initial concentration of lubricating molecules. These areas represent defects in the film prone to adsorption of water or contaminants that can cause movable structures to adhere. These analysis methods also indicated significant variability in the coverage of lubricating molecules from one coating process to another, even for identical processing conditions. The variability was due to residual molecules left in the deposition chamber after incomplete cleaning. The coating process was modified to result in improved uniformity and total coverage. Still, a direct correlation was found between the resulting static friction behavior of MEMS interfaces, and the absolute monolayer coverage. While experimental results indicated that many devices would fail to start after aging, the modeling approach used here predicted that all the devices should start. Adhesion modeling based upon values of adhesion energy from cantilever beams is therefore inadequate. Material deposition that bridged gaps was observed in some devices, and potentially inhibits start-up more than the adhesion model indicates. Advances were made in our ability to model MEMS devices, but additional combined experimental-modeling studies will be needed to advance the work to a point of providing predictive capability. The methodology developed here should prove useful in future assessments of device aging, however. Namely, it consisted of measuring interface properties, determining how they change with time, developing a model of device behavior incorporating interface behavior, and then using the age-aware interface behavior model to predict device function.

More Details
Results 51–100 of 121
Results 51–100 of 121