Publications

Results 26–31 of 31
Skip to search filters

Mechanisms of Atmospheric Copper Sulfidation and Evaluation of Parallel Experimentation Techniques

Barbour, J.C.; Breiland, William G.; Moffat, Harry K.; Sullivan, John P.; Campin, Michael J.; Wright, Alan F.; Missert, Nancy A.; Braithwaite, J.W.; Zavadil, Kevin R.; Sorensen, Neil R.; Lucero, Samuel J.

A physics-based understanding of material aging mechanisms helps to increase reliability when predicting the lifetime of mechanical and electrical components. This report examines in detail the mechanisms of atmospheric copper sulfidation and evaluates new methods of parallel experimentation for high-throughput corrosion analysis. Often our knowledge of aging mechanisms is limited because coupled chemical reactions and physical processes are involved that depend on complex interactions with the environment and component functionality. Atmospheric corrosion is one of the most complex aging phenomena and it has profound consequences for the nation's economy and safety. Therefore, copper sulfidation was used as a test-case to examine the utility of parallel experimentation. Through the use of parallel and conventional experimentation, we measured: (1) the sulfidation rate as a function of humidity, light, temperature and O{sub 2} concentration; (2) the primary moving species in solid state transport; (3) the diffusivity of Cu vacancies through Cu{sub 2}S; (4) the sulfidation activation energies as a function of relative humidity (RH); (5) the sulfidation induction times at low humidities; and (6) the effect of light on the sulfidation rate. Also, the importance of various sulfidation mechanisms was determined as a function of RH and sulfide thickness. Different models for sulfidation-reactor geometries and the sulfidation reaction process are presented.

More Details

Determination of solid-state sulfidation mechanisms in ion-implanted copper

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Barbour, J.C.; Braithwaite, J.W.; Wright, Alan F.

Ion-beam irradiation and ion implantation were used to evaluate the influence of point defects and alloying elements on the sulfidation rate of copper films in atmospheric environments containing H2S. Low-energy ions from an oxygen plasma were used to grow thin metal oxide passivation layers on Cu films that were subsequently irradiated and exposed to sulfidizing environments (50-600 ppb H2S in air with 0.5-85% relative humidity). The type of oxide proved to be important in that a CuO layer essentially prevented sulfidation whereas a Cu2O layer permitted sulfidation. For the native copper oxide (Cu2O), density-functional theory modeling of Cu divacancy binding energies suggested that alloying with In or Al would cause vacancy trapping and possibly slow the rate of sulfidation. This finding was then experimentally verified for an In-implanted Cu film. A series of marker experiments using unalloyed Cu showed that sulfidation proceeds by solid-state transport of Cu from the substrate through the Cu2S product layer. © 2001 Elsevier Science B.V.

More Details

Electronic defects and interface potentials for Al oxide films on Al and their relationship to electrochemical properties

Sullivan, John P.; Dunn, Roberto G.; Barbour, J.C.; Wall, Frederick D.; Missert, Nancy A.

The relative electronic defect densities and oxide interface potentials were determined for naturally-occurring and synthetic Al oxides on Al. In addition, the effect of electrochemical treatment on the oxide electrical properties was assessed. The measurements revealed (1) that the open circuit potential of Al in aqueous solution is inversely correlated with the oxide electronic defect density (viz., lower oxide conductivities are correlated with higher open circuit potentials), and (2) the electronic defect density within the Al oxide is increased upon exposure to an aqueous electrolyte at open circuit or applied cathodic potentials, while the electronic defect density is reduced upon exposure to slight anodic potentials in solution. This last result, combined with recent theoretical predictions, suggests that hydrogen may be associated with electronic defects within the Al oxide, and that this H may be a mobile species, diffusing as H{sup +}. The potential drop across the oxide layer when immersed in solution at open circuit conditions was also estimated and found to be 0.3 V, with the field direction attracting positive charge towards the Al/oxide interface.

More Details

Nanostructural characterization of amorphous diamondlike carbon films

Physical Review B

Siegal, Michael P.; Tallant, David T.; Barbour, J.C.; Simpson, Regina L.; Overmyer, Donald L.

Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetic and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of 3- and 4-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetic of PLD growth results in films becoming more ``diamondlike'', i.e. increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film.

More Details

Growth and Oxidation of Thin Film Al(2)Cu

Journal of the Electrochemical Society

Missert, Nancy A.; Barbour, J.C.; Copeland, Robert G.; Minor, Kenneth G.

Al{sub 2}Cu thin films ({approx} 382 nm) are fabricated by melting and resolidifying Al/Cu bilayers in the presence of a {micro} 3 nm Al{sub 2}O{sub 3} passivating layer. X-ray Photoelectron Spectroscopy (XPS) measures a 1.0 eV shift of the Cu2p{sub 3/2} peak and a 1.6 eV shift of the valence band relative to metallic Cu upon Al{sub 2}Cu formation. Scanning Electron microscopy (SEM) and Electron Back-Scattered Diffraction (EBSD) show that the Al{sub 2}Cu film is composed of 30-70 {micro}m wide and 10-25 mm long cellular grains with (110) orientation. The atomic composition of the film as estimated by Energy Dispersive Spectroscopy (EDS) is 67 {+-} 2% Al and 33 {+-} 2% Cu. XPS scans of Al{sub 2}O{sub 3}/Al{sub 2}Cu taken before and after air exposure indicate that the upper Al{sub 2}Cu layers undergo further oxidation to Al{sub 2}O{sub 3} even in the presence of {approx} 5 nm Al{sub 2}O{sub 3}. The majority of Cu produced from oxidation is believed to migrate below the Al{sub 2}O{sub 3} layers, based upon the lack of evidence for metallic Cu in the XPS scans. In contrast to Al/Cu passivated with Al{sub 2}O{sub 3}, melting/resolidifying the Al/Cu bilayer without Al{sub 2}O{sub 3} results in phase-segregated dendritic film growth.

More Details
Results 26–31 of 31
Results 26–31 of 31