Publications

45 Results
Skip to search filters

Valley splitting of single-electron Si MOS quantum dots

Applied Physics Letters

Gamble, John K.; Harvey-Collard, Patrick; Jacobson, Noah T.; Baczewski, Andrew D.; Nielsen, Erik N.; Maurer, Leon; Montano, Ines M.; Rudolph, Martin R.; Carroll, Malcolm; Yang, C.H.; Rossi, A.; Dzurak, A.S.; Muller, Richard P.

Silicon-based metal-oxide-semiconductor quantum dots are prominent candidates for high-fidelity, manufacturable qubits. Due to silicon's band structure, additional low-energy states persist in these devices, presenting both challenges and opportunities. Although the physics governing these valley states has been the subject of intense study, quantitative agreement between experiment and theory remains elusive. Here, we present data from an experiment probing the valley states of quantum dot devices and develop a theory that is in quantitative agreement with both this and a recently reported experiment. Through sampling millions of realistic cases of interface roughness, our method provides evidence that the valley physics between the two samples is essentially the same.

More Details

Selective layer disordering in intersubband Al0.028Ga0.972 N/AlN superlattices with silicon nitride capping layer

Applied Physics Express

Wierer Jr, Jonathan W.; Allerman, A.A.; Skogen, Erik J.; Tauke-Pedretti, Anna; Vawter, Gregory A.; Montano, Ines M.

We demonstrate the selective layer disordering in intersubband Al0.028Ga0.972 N/AlN superlattices using a silicon nitride (SiNx) capping layer. The (SiNx) capped superlattice exhibits suppressed layer disordering under high-temperature annealing. In addition, the rate of layer disordering is reduced with increased SiNx thickness. The layer disordering is caused by Si diffusion, and the SiNx layer inhibits vacancy formation at the crystal surface and ultimately, the movement of Al and Ga atoms across the heterointerfaces. In conclusion, patterning of the SiNx layer results in selective layer disordering, an attractive method to integrate active and passive III–nitride-based intersubband devices.

More Details

Layer disordering and doping compensation of an intersubband AlGaN/AlN superlattice by silicon implantation

Applied Physics Letters

Wierer, J.J.; Allerman, A.A.; Skogen, Erik J.; Tauke-Pedretti, Anna; Alford, Charles A.; Vawter, Gregory A.; Montano, Ines M.

Layer disordering and doping compensation of an Al0.028Ga0.972N/AlN superlattice by implantation are demonstrated. The as-grown sample exhibits intersubband absorption at ∼1.56 μm which is modified when subject to a silicon implantation. After implantation, the intersubband absorption decreases and shifts to longer wavelengths. Also, with increasing implant dose, the intersubband absorption decreases. It is shown that both layer disordering of the heterointerfaces and doping compensation from the vacancies produced during the implantation cause the changes in the intersubband absorption. Such a method is useful for removing absorption in spatially defined areas of III-nitride optoelectronic devices by, for example, creating low-loss optical waveguides monolithically that can be integrated with as-grown areas operating as electro-absorption intersubband modulators.

More Details

Summary of NEMO3D Calculations on RedSky

Muller, Richard P.; Montano, Ines M.

We have been using RedSky to investigate the physics of donor atoms in silicon for use as qubits for quantum computing. Quantum computing promises to dramatically change the performance of certain algorithms; this work is part of a quantum computing project led by Malcolm Carroll. We have investigated the magnitude of energy barriers for transferring electrons between donor centers and to elecrostaticallydefined quantum dots at the silicon oxide interface. Understanding these barriers helps us design structures that we think will be robust to noise and decoherence effects, and will help us understand experimental results as we build preliminary structures. There are only a few other research groups in the world conducting research along these lines. The work has been an important element of understanding the design principles that constrain computing devices at low temperature. We will continue this work in the future, in particular to analyze experimental results we anticipate coming from CINT collaborators.

More Details

4-wave mixing for phase-matching free nonlinear optics in quantum cascade structures : LDRD 08-0346 final report

Chow, Weng W.; Wanke, Michael W.; Allen, Dan G.; Yang, Zhenshan Y.; Montano, Ines M.

Optical nonlinearities and quantum coherences have the potential to enable efficient, high-temperature generation of coherent THz radiation. This LDRD proposal involves the exploration of the underlying physics using intersubband transitions in a quantum cascade structure. Success in the device physics aspect will give Sandia the state-of-the-art technology for high-temperature THz quantum cascade lasers. These lasers are useful for imaging and spectroscopy in medicine and national defense. Success may have other far-reaching consequences. Results from the in-depth study of coherences, dephasing and dynamics will eventually impact the fields of quantum computing, optical communication and cryptology, especially if we are successful in demonstrating entangled photons or slow light. An even farther reaching development is if we can show that the QC nanostructure, with its discrete atom-like intersubband resonances, can replace the atom in quantum optics experiments. Having such an 'artificial atom' will greatly improve flexibility and preciseness in experiments, thereby enhancing the discovery of new physics. This is because we will no longer be constrained by what natural can provide. Rather, one will be able to tailor transition energies and optical matrix elements to enhance the physics of interest. This report summarizes a 3-year LDRD program at Sandia National Laboratories exploring optical nonlinearities in intersubband devices. Experimental and theoretical investigations were made to develop a fundamental understanding of light-matter interaction in a semiconductor system and to explore how this understanding can be used to develop mid-IR to THz emitters and nonclassical light sources.

More Details

Characterization of the absorbance bleaching in AllnAs/AlGaInAs multiple-quantum wells for semiconductor saturable absorbers

Bender, Daniel A.; Wanke, Michael W.; Montano, Ines M.; Cross, Karen C.

Semiconductor saturable absorbers (SESAs) introduce loss into a solid-state laser cavity until the cavity field bleaches the absorber producing a high-energy pulse. Multiple quantum wells (MQWs) of AlGaInAs grown lattice-matched to InP have characteristics that make them attractive for SESAs. The band gap can be tuned around the target wavelength, 1064 nm, and the large conduction band offset relative to the AlInAs barrier material helps reduces the saturation fluence, and transparent substrate reduces nonsaturable losses. We have characterized the lifetime of the bleaching process, the modulation depth, the nonsaturable losses, and the saturation fluence associated with SESAs. We compare different growth conditions and structure designs. These parameters give insight into the quality of the epitaxy and effect structure design has on SESA performance in a laser cavity. AlGaInAs MQWs were grown by MOVPE using a Veeco D125 machine using methyl-substituted metal-organics and hydride sources at a growth temperature of 660 C at a pressure of 60 Torr. A single period of the basic SESA design consists of approximately 130 to 140 nm of AlInAs barrier followed by two AlGaInAs quantum wells separated by 10 nm AlInAs. This design places the QWs near the nodes of the 1064-nm laser cavity standing wave. Structures consisting of 10-, 20-, and 30-periods were grown and evaluated. The SESAs were measured at 1064 nm using an optical pump-probe technique. The absorbance bleaching lifetime varies from 160 to 300 nsec. The nonsaturable loss was as much as 50% for structures grown on n-type, sulfur-doped InP substrates, but was reduced to 16% when compensated, Fe-doped InP substrates were used. The modulation depth of the SESAs increased linearly from 9% to 30% with the number of periods. We are currently investigating how detuning the QW transition energy impacts the bleaching characteristics. We will discuss how each of these parameters impacts the laser performance.

More Details

THz quantum cascade lasers for standoff molecule detection

Wanke, Michael W.; Lerttamrab, Maytee L.; Montano, Ines M.; Chow, Weng W.

Remote optical detection of molecules, agents, and energetic materials has many applications to national security interests. Currently there is significant interest in determining under what circumstances THz frequency coverage will aid in a complete sensing package. Sources of coherent THz frequency (i.e. 0.1 to 10 THz) electromagnetic radiation with requisite power levels, frequency agility, compactness and reliability represent the single greatest obstacle in establishing a THz technology base, but recent advances in semiconductor-based quantum cascade lasers (QCLs) offer huge improvements towards the ultimate THz source goals. This project advanced the development of narrow-linewidth THz quantum cascade lasers. We developed theoretical tools to guide the improvement of standard THz quantum cascade lasers, the investigation of nonlinear optics employing infrared QCLs, and the exploration of quantum coherence to improve QCL performance. The latter was aimed especially towards achieving high temperature operation. In addition we developed a computer algorithm capable of shifting the frequencies of an existing THz QCL to a different frequency and invented a new type of laser that may enable room temperature THz generation in a electrically driven solid-state source.

More Details
45 Results
45 Results