Publications

Results 151–175 of 419
Skip to search filters

An Efficient Holographic Huygens? Metasurface based on Dielectric Resonant Meta-Atoms

Brener, Igal B.; Chong, Katie E.; wang, lei w.; Staude, Isabelle S.; Decker, Manuel D.; Neshev, Dragomir N.; Kivshar, Yuri S.; James, Anthony R.; Dominguez, Jason J.; Subramania, Ganapathi S.; Liu, Sheng L.

Subwavelength-thin metasurfaces have shown great promises for the control of optical wavefronts, thus opening new pathways for the development of efficient flat optics. In particular, Huygens’ metasurfaces based on all-dielectric resonant meta-atoms have already shown a huge potential for practical applications with their polarization insensitivity and high transmittance efficiency. Here, we experimentally demonstrate a holographic Huygens’ metasurface based on dielectric resonant meta-atoms capable of complex wavefront control at telecom wavelengths. Our metasurface produces a hologram image in the far-field with 82% transmittance efficiency and 40% imaging efficiency. Such efficient complex wavefront control shows that Huygens’ metasurfaces based on resonant dielectric meta-atoms are a big step towards practical applications of metasurfaces in wavefront design related technologies, including computer-generated holograms, ultra-thin optics, security and data storage devices.

More Details

Resonant terahertz absorption in carbon microfibres

2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, METAMATERIALS 2015

Khromova, I.; Mitrofanov, O.; Navarro-Cia, M.; Liberal, I.; Brener, Igal B.; Reno, J.; Melnikov, L.; Ponomarev, A.

Microsized carbon fibres exhibit strong resonant absorption at terahertz frequencies. Using near-field terahertz time-domain spectroscopy, we probe their conductivity by analysing the degree of field enhancement produced by plasmonic resonances. We demonstrate, theoretically and experimentally, the potential usability of carbon microfibres as terahertz absorbers with engineerable response.

More Details

Handheld Microneedle-Based Electrolyte Sensing Platform

Polsky, Ronen P.; Miller, Philip R.; Rivas, Rhiana R.; Johnson, David R.; Edwards, Thayne L.; Koskelo, Markku J.; Shawa, Luay S.; Brener, Igal B.; Chavez, Victor

Sandia National Laboratories will provide technical assistance, within time and budget, to Requester on testing and analyzing a microneedle-based electrolyte sensing platform. Hollow microneedles will be fabricated at Sandia and integrated with a fluidic chip using plastic laminate prototyping technology available at Sandia. In connection with commercial ion selective electrodes the sensing platform will be tested for detection of electrolytes (sodium and/or potassium) within physiological relevant concent ration ranges.

More Details

Epsilon-near-zero modes for tailored light-matter interaction

Physical Review Applied

Campione, Salvatore; Liu, Sheng L.; Benz, Alexander; Klem, John F.; Sinclair, Michael B.; Brener, Igal B.

Epsilon-near-zero (ENZ) modes arising from condensed-matter excitations such as phonons and plasmons are a new path for tailoring light-matter interactions at the nanoscale. Complex spectral shaping can be achieved by creating such modes in nanoscale semiconductor layers and controlling their interaction with multiple, distinct, dipole resonant systems. Examples of this behavior are presented at midinfrared frequencies for ENZ modes that are strongly coupled to metamaterial resonators and simultaneously strongly coupled to semiconductor phonons or quantum-well intersubband transitions (ISTs), resulting in double- and triple-polariton branches in transmission spectra. For the double-polariton branch case, we find that the best strategy to maximize the Rabi splitting is to use a combination of a doped layer supporting an ENZ feature and a layer supporting ISTs, with overlapping ENZ and IST frequencies. This design flexibility renders this platform attractive for low-voltage tunable filters, light-emitting diodes, and efficient nonlinear composite materials.

More Details

Enhanced optical nonlinearities in the near-infrared using III-nitride heterostructures coupled to metamaterials

Applied Physics Letters

Wolf, Omri W.; Allerman, A.A.; Ma, Xuedan M.; Wendt, J.R.; Song, Alex Y.; Shaner, Eric A.; Brener, Igal B.

We use planar metamaterial resonators to enhance by more than two orders of magnitude the near infrared second harmonic generation obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators' cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a different class of sources for quantum photonics related phenomena.

More Details

Tunable Quantum Dot Solids: Impact of Interparticle Interactions on Bulk Properties

Sinclair, Michael B.; Fan, Hongyou F.; Brener, Igal B.; Luk, Ting S.; Liu, Sheng L.

QD-solids comprising self-assembled semiconductor nanocrystals such as CdSe are currently under investigation for use in a wide array of applications including light emitting diodes, solar cells, field effect transistors, photodetectors, and biosensors. The goal of this LDRD project was develop a fundamental understanding of the relationship between nanoparticle interactions and the different regimes of charge and energy transport in semiconductor quantum dot (QD) solids. Interparticle spacing was tuned through the application of hydrostatic pressure in a diamond anvil cell, and the impact on interparticle interactions was probed using x-ray scattering and a variety of static and transient optical spectroscopies. During the course of this LDRD, we discovered a new, previously unknown, route to synthesize semiconductor quantum wires using high pressure sintering of self-assembled quantum dot crystals. We believe that this new, pressure driven synthesis approach holds great potential as a new tool for nanomaterials synthesis and engineering.

More Details

Electrically Injected UV-Visible Nanowire Lasers

Wang, George T.; Li, Changyi L.; Li, Qiming L.; Liu, Sheng L.; Wright, Jeremy B.; Brener, Igal B.; Luk, Ting S.; Chow, Weng W.; Leung, Benjamin L.; Figiel, J.J.; Koleske, Daniel K.; Lu, Tzu-Ming L.

There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasers emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.

More Details

Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control

Nano Letters

Chong, Katie E.; Staude, Isabelle; James, Anthony R.; Dominguez, Jason J.; Liu, Sheng L.; Campione, Salvatore; Subramania, Ganapathi S.; Luk, Ting S.; Decker, Manuel; Neshev, Dragomir N.; Brener, Igal B.; Kivshar, Yuri S.

We experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0-2 phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter.

More Details

Dipolar resonances in conductive carbon micro-fibers probed by near-field terahertz spectroscopy

Applied Physics Letters

Khromova, I.K.; Navarro-Cia, M.N.; Brener, Igal B.; Reno, J.L.; Ponomarev, A.N.; Mitrofanov, O.M.

In this study, we observe dipole resonances in thin conductive carbon micro-fibers by detecting an enhanced electric field in the near-field of a single fiber at terahertz (THz) frequencies. Time-domain analysis of the electric field shows that each fiber sustains resonant current oscillations at the frequency defined by the fiber's length. Strong dependence of the observed resonance frequency and degree of field enhancement on the fibers' conductive properties enable direct non-contact probing of the THz conductivity in single carbon micro-fibers. We find the conductivity of the fibers to be within the range of 1– 5∙104 S/m. This approach is suitable for experimental characterization of individual doped semiconductor resonators for THz metamaterials and devices.

More Details

Phased-array sources based on nonlinear metamaterial nanocavities

Nature Communications

Wolf, Omri W.; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng L.; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal B.

Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.

More Details

Continuous and dynamic spectral tuning of single nanowire lasers with subnanometer resolution using hydrostatic pressure

Nanoscale

Liu, Sheng L.; Li, Changyi; Figiel, J.J.; Brueck, Steven R.J.; Brener, Igal B.; Wang, George T.

We report continuous, dynamic, reversible, and widely tunable lasing from 367 to 337 nm from single GaN nanowires (NWs) by applying hydrostatic pressure up to ∼7 GPa. The GaN NW lasers, with heights of 4-5 μm and diameters ∼140 nm, are fabricated using a lithographically defined two-step top-down technique. The wavelength tuning is caused by an increasing Γ direct bandgap of GaN with increasing pressure and is precisely controllable to subnanometer resolution. The observed pressure coefficients of the NWs are ∼40% larger compared with GaN microstructures fabricated from the same material or from reported bulk GaN values, revealing a nanoscale-related effect that significantly enhances the tuning range using this approach. This approach can be generally applied to other semiconductor NW lasers to potentially achieve full spectral coverage from the UV to IR.

More Details
Results 151–175 of 419
Results 151–175 of 419