Publications

Results 101–150 of 419
Skip to search filters

Huygens' Metasurfaces Enabled by Magnetic Dipole Resonance Tuning in Split Dielectric Nanoresonators

Nano Letters

Liu, Sheng L.; Vaskin, Aleksandr; Campione, Salvatore; Wolf, Omri; Sinclair, Michael B.; Reno, J.L.; Keeler, Gordon A.; Staude, Isabelle; Brener, Igal B.

Dielectric metasurfaces that exploit the different Mie resonances of nanoscale dielectric resonators are a powerful platform for manipulating electromagnetic fields and can provide novel optical behavior. In this work, we experimentally demonstrate independent tuning of the magnetic dipole resonances relative to the electric dipole resonances of split dielectric resonators (SDRs). By increasing the split dimension, we observe a blue shift of the magnetic dipole resonance toward the electric dipole resonance. Therefore, SDRs provide the ability to directly control the interaction between the two dipole resonances within the same resonator. For example, we achieve the first Kerker condition by spectrally overlapping the electric and magnetic dipole resonances and observe significantly suppressed backward scattering. Moreover, we show that a single SDR can be used as an optical nanoantenna that provides strong unidirectional emission from an electric dipole source.

More Details

Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber

Nature Photonics

Yang, Yuanmu Y.; Kelley, Kyle; Sachet, Edward; Campione, Salvatore; Luk, Ting S.; Maria, Jon P.; Sinclair, Michael B.; Brener, Igal B.

Ultrafast control of the polarization state of light may enable a plethora of applications in optics, chemistry and biology. However, conventional polarizing elements, such as polarizers and waveplates, are either static or possess only gigahertz switching speeds. Here, with the aid of high-mobility indium-doped cadmium oxide (CdO) as the gateway plasmonic material, we realize a high-quality factor Berreman-type perfect absorber at a wavelength of 2.08 μm. On sub-bandgap optical pumping, the perfect absorption resonance strongly redshifts because of the transient increase of the ensemble-averaged effective electron mass of CdO, which leads to an absolute change in the p-polarized reflectance from 1.0 to 86.3%. By combining the exceedingly high modulation depth with the polarization selectivity of the perfect absorber, we experimentally demonstrate a reflective polarizer with a polarization extinction ratio of 91 that can be switched on and off within 800 fs.

More Details

Electrically tunable all-dielectric optical metasurfaces based on liquid crystals

Applied Physics Letters

Komar, Andrei; Fang, Zheng; Bohn, Justus; Sautter, Jürgen; Decker, Manuel; Miroshnichenko, Andrey; Pertsch, Thomas; Brener, Igal B.; Kivshar, Yuri S.; Staude, Isabelle; Neshev, Dragomir N.

We demonstrate electrical tuning of the spectral response of a Mie-resonant dielectric metasurface consisting of silicon nanodisks embedded into liquid crystals. We use the reorientation of nematic liquid crystals in a moderate applied electric field to alter the anisotropic permittivity tensor around the metasurface. By switching a control voltage “on” and “off,” we induce a large spectral shift of the metasurface resonances, resulting in an absolute transmission modulation of up to 75%. Our experimental demonstration of voltage control of dielectric metasurfaces paves the way for new types of electrically tunable metadevices, including dynamic displays and holograms.

More Details

Nonpolar InGaN/GaN Core-Shell Single Nanowire Lasers

Nano Letters

Li, Changyi; Wright, Jeremy B.; Liu, Sheng L.; Lu, Ping L.; Figiel, J.J.; Leung, Benjamin; Chow, Weng W.; Brener, Igal B.; Koleske, Daniel K.; Luk, Ting S.; Feezell, Daniel F.; Brueck, S.R.J.; Wang, George T.

We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core-shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core-shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core-shell nanowires, despite significantly shorter cavity lengths and reduced active region volume. Mode simulations show that due to the core-shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. The results show the viability of this p-i-n nonpolar core-shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV-visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.

More Details

Detection of internal fields in double-metal terahertz resonators

Applied Physics Letters

Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei; Bozhevolnyi, Sergey I.; Brener, Igal B.; Reno, J.L.

Terahertz (THz) double-metal plasmonic resonators enable enhanced light-matter coupling by exploiting strong field confinement. The double-metal design however restricts access to the internal fields. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal electromagnetic fields in double-metal plasmonic resonators. We use the concept of image charges and aperture-type scanning near-field THz time-domain microscopy to probe the fields confined within the closed resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.

More Details

Optically thin hybrid cavity for terahertz photo-conductive detectors

Applied Physics Letters

Thompson, R.J.; Siday, T.; Glass, S.; Luk, Ting S.; Reno, J.L.; Brener, Igal B.; Mitrofanov, O.

The efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that the nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.

More Details

Transient GaAs plasmonic metasurfaces at terahertz frequencies

ACS Photonics

Yang, Yuanmu Y.; Kamaraju, N.; Campione, Salvatore; Liu, Sheng L.; Reno, J.L.; Sinclair, Michael B.; Prasankumar, Rohit P.; Brener, Igal B.

We demonstrate the ultrafast formation of terahertz (THz) metasurfaces through all-optical creation of spatially modulated carrier density profiles in a deep-subwavelength GaAs film. The switch-on of the transient plasmon mode, governed by the GaAs effective electron mass and electron− phonon interactions, is revealed by structured-optical pump THz probe spectroscopy, on a time scale of 500 fs. By modulating the carrier density using different pump fluences, we observe a wide tuning of the electric dipole resonance of the transient GaAs metasurface from 0.5 THz to 1.7 THz. Furthermore, we numerically demonstrate that the metasurface presented here can be generalized to more complex architectures for realizing functionalities such as perfect absorption, leading to a 30 dB modulation depth. The platform also provides a pathway to achieve ultrafast manipulation of infrared beams in the linear and, potentially, nonlinear regime.

More Details

III-V dielectric metasurfaces: Enhanced nonlinearities and emission control

Optics InfoBase Conference Papers

Liu, Sheng L.; Vaskin, Aleksandr; Vabishchevich, Polina V.; Addamane, Sadhvikas; Keeler, Gordon A.; Reno, J.L.; Yang, Yuanmu Y.; Staude, Isabelle; Balarishnan, Ganesh; Sinclair, Michael B.; Brener, Igal B.

Using III-V dielectric metasurfaces, we experimentally demonstrate resonantly enhanced harmonic generations up to the 4th order. Moreover, we observe large enhancements and spectral tailoring of the photoluminescence of quantum dots embedded inside dielectric metasurfaces. © OSA 2017.

More Details

2D and 3D all dielectric metamaterials made from III-V semiconductors

2016 Conference on Lasers and Electro-Optics, CLEO 2016

Liu, Sheng L.; Keeler, Gordon A.; Reno, J.L.; Sinclair, Michael B.; Brener, Igal B.

We present all-dielectric 2D and 3D metamaterials that are monolithically fabricated from III-V semiconductor nanostructures. The active/gain and high optical nonlinearity properties of the metamaterials can lead to new classes of active devices.

More Details

Efficient second harmonic generation from GaAs all-dielectric metasurfaces

2016 Conference on Lasers and Electro-Optics, CLEO 2016

Liu, Sheng L.; Keeler, Gordon A.; Reno, J.L.; Yang, Yuanmu Y.; Sinclair, Michael B.; Brener, Igal B.

We experimentally observe large enhancement of second-harmonic generation (SHG) from GaAs metasurfaces. The SHG polarization when excited at the electric and magnetic dipole resonances is orthogonal and can be attributed to different nonlinear generation mechanisms.

More Details

Tailoring dielectric resonator geometries for directional scattering, Huygens' metasurfaces, and high quality-factor Fano resonances

2016 URSI International Symposium on Electromagnetic Theory, EMTS 2016

Campione, Salvatore; Basilio, Lorena I.; Warne, Larry K.; Langston, William L.; Luk, Ting S.; Wendt, J.R.; Liu, Sheng L.; Brener, Igal B.; Sinclair, Michael B.

Metamaterial dielectric resonators represent a promising path toward low-loss metamaterials at optical frequencies. In this paper we utilize perturbations of high symmetry resonator geometries, such as cubes, either to overlap the electric and magnetic dipole resonances, thereby enabling directional scattering and Huygens' metasurfaces, or to induce couplings between the otherwise orthogonal resonator modes to achieve high-quality factor Fano resonances. Our results are fully scalable across any frequency bands where high-permittivity dielectric materials are available, including microwave, THz, and infrared frequencies.

More Details

Spectral filtering using active metasurfaces compatible with narrow bandgap III-V infrared detectors

Optics Express

Wolf, Omri W.; Campione, Salvatore; Kim, Jin K.; Brener, Igal B.

Narrow-bandgap semiconductors such as alloys of InAsAlSb and their heterostructures are considered promising candidates for next generation infrared photodetectors and devices. The prospect of actively tuning the spectral responsivity of these detectors at the pixel level is very appealing. In principle, this could be achieved with a tunable metasurface fabricated monolithically on the detector pixel. Here, we present first steps towards that goal using a complementary metasurface strongly coupled to an epsilon-near-zero (ENZ) mode operating in the long-wave region of the infrared spectrum. We fabricate such a coupled system using the same epitaxial layers used for infrared pixels in a focal plane array and demonstrate the existence of ENZ modes in high mobility layers of InAsSb. We confirm that the coupling strength between the ENZ mode and the metasurface depends on the ENZ layer thickness and demonstrate a transmission modulation on the order of 25%. We further show numerically the expected tunable spectral behavior of such coupled system under reverse and forward bias, which could be used in future electrically tunable detectors.

More Details

Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces

Nano Letters

Liu, Sheng L.; Sinclair, Michael B.; Saravi, Sina; Keeler, Gordon A.; Yang, Yuanmu Y.; Reno, J.L.; Peake, Gregory M.; Setzpfandt, Frank; Staude, Isabelle; Pertsch, Thomas; Brener, Igal B.

Nonlinear optical phenomena in nanostructured materials have been challenging our perceptions of nonlinear optical processes that have been explored since the invention of lasers. For example, the ability to control optical field confinement, enhancement, and scattering almost independently allows nonlinear frequency conversion efficiencies to be enhanced by many orders of magnitude compared to bulk materials. Also, the subwavelength length scale renders phase matching issues irrelevant. Compared with plasmonic nanostructures, dielectric resonator metamaterials show great promise for enhanced nonlinear optical processes due to their larger mode volumes. Here, we present, for the first time, resonantly enhanced second-harmonic generation (SHG) using gallium arsenide (GaAs) based dielectric metasurfaces. Using arrays of cylindrical resonators we observe SHG enhancement factors as large as 104 relative to unpatterned GaAs. At the magnetic dipole resonance, we measure an absolute nonlinear conversion efficiency of ∼2 × 10-5 with ∼3.4 GW/cm2 pump intensity. The polarization properties of the SHG reveal that both bulk and surface nonlinearities play important roles in the observed nonlinear process.

More Details

Splitting of magnetic dipole modes in anisotropic TiO2 micro-spheres

Laser and Photonics Reviews

Khromova, Irina; Kužel, Petr; Brener, Igal B.; Reno, J.L.; Chung Seu, U.C.; Elissalde, Catherine; Maglione, Mario; Mounaix, Patrick; Mitrofanov, Oleg

Monocrystalline titanium dioxide (TiO2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii (Formula presented.) m through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Anisotropic TiO2 micro-resonators can be used to enhance the interplay of magnetic and electric dipole resonances in the emerging THz all-dielectric metamaterial technology. (Figure presented.) .

More Details

Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators

IEEE Transactions on Terahertz Science and Technology

Mitrofanov, Oleg; Khromova, Irina; Siday, Thomas; Thompson, Robert J.; Ponomarev, Andrey N.; Brener, Igal B.; Reno, J.L.

We present the temporal evolution of the terahertz (THz) field leading to the excitation of plasmonic resonances in carbon microfibers. The field evolution is mapped in space and time for the 3/2 wavelength resonance using a subwavelength aperture THz near-field probe with an embedded THz photoconductive detector. The excitation of surface waves at the fiber tips leads to the formation of a standing wave along the fiber. Local THz time-domain spectroscopy at one of the standing wave crests shows a clear third-order resonance peak at 1.65 THz, well described by the Lorentz model. This application of the subwavelength aperture THz near-field microscopy for mode mapping and local spectroscopy demonstrates the potential of near-field methods for studies of subwavelength plasmonic THz resonators.

More Details

Multipolar Coupling in Hybrid Metal-Dielectric Metasurfaces

ACS Photonics

Guo, Rui; Rusak, Evgenia; Staude, Isabelle; Dominguez, Jason J.; Decker, Manuel; Rockstuhl, Carsten; Brener, Igal B.; Neshev, Dragomir N.; Kivshar, Yuri S.

We study functional hybrid metasurfaces consisting of metal-dielectric nanoantennas that direct light from an incident plane wave or from localized light sources into a preferential direction. The directionality is obtained by carefully balancing the multipolar contributions to the scattering response from the constituents of the metasurface. The hybrid nanoantennas are composed of a plasmonic gold nanorod acting as a feed element and a silicon nanodisk acting as a director element. In order to experimentally realize this design, we have developed a two-step electron-beam lithography process in combination with a precision alignment step. The optical response of the fabricated sample is measured and reveals distinct signatures of coupling between the plasmonic and the dielectric nanoantenna elements that ultimately leads to unidirectional radiation of light.

More Details

Intrinsic polarization control in rectangular GaN nanowire lasers

Nanoscale

Li, Changyi; Liu, Sheng L.; Luk, Ting S.; Figiel, J.J.; Brener, Igal B.; Brueck, S.R.J.; Wang, George T.

We demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444 kW cm-2 and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control over the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates.

More Details

Photoconductive Terahertz Near-Field Detector with a Hybrid Nanoantenna Array Cavity

ACS Photonics

Mitrofanov, Oleg; Brener, Igal B.; Luk, Ting S.; Reno, J.L.

Nanoscale structuring of optical materials leads to modification of their properties and can be used for improving efficiencies of photonic devices and for enabling new functionalities. In ultrafast optoelectronic switches for generation and detection of terahertz (THz) radiation, incorporation of nanostructures allows us to overcome inherent limitations of photoconductive materials. We propose and demonstrate a nanostructured photoconductive THz detector for sampling highly localized THz fields, down to the level of λ/150. The nanostructure that consists of an array of optical nanoantennas and a distributed Bragg reflector forms a hybrid cavity, which traps optical gate pulses within the photoconductive layer. The effect of photon trapping is observed as enhanced absorption at a designed wavelength. This optically thin photoconductive THz detector allows us to detect highly confined evanescent THz fields coupled through a deeply subwavelength aperture as small as 2 μm (λ/150 at 1 THz). By monolithically integrating the THz detector with apertures ranging from 2 to 5 μm we realize higher spatial resolution and higher sensitivity in aperture-type THz near-field microscopy and THz time-domain spectroscopy.

More Details

Terahertz near-field imaging of surface plasmon waves in graphene structures

Solid State Communications

Mitrofanov, O.; Yu, W.; Thompson, R.J.; Jiang, Y.; Greenberg, Z.J.; Palmer, J.; Brener, Igal B.; Pan, Wei P.; Berger, C.; De Heer, W.A.; Jiang, Z.

We introduce a near-field scanning probe terahertz (THz) microscopy technique for probing surface plasmon waves on graphene. Based on THz time-domain spectroscopy method, this near-field imaging approach is well suited for studying the excitation and evolution of THz plasmon waves on graphene as well as for mapping of graphene properties at THz frequencies on the sub-wavelength scale.

More Details
Results 101–150 of 419
Results 101–150 of 419